962 resultados para IRM cement
Resumo:
The objective of this research was to optimise the rheological parameters, hardened properties, and setting times of cement grouts containing metakaolin (MTK), viscosity-modifying agent (VMA) and superplasticiser (SP). All mixes were made with water-to-binder ratio (W/B) of 0.40. The replacement of cement by MTK was varied from 6% to 20% (by mass), and dosages of SP and VMA were varied from 0.3% to 1.4%, and 0.01% and 0.06% (by mass of binder), respectively. Increased SP led to an increase in fluidity, reduction in flow time, plate cohesion, rheological parameters, and an increase in the setting times. Increased VMA demonstrated a reduction in fluidity, an increase in Marsh cone time, plate cohesion, yield stress, and plastic viscosity. Results indicate that the use of MTK increased yield stress, plastic viscosity, cohesion plate, and flow time due to the higher surface area associated with an increase in the water demand. MTK reduced mini-slump and setting times, and improved compressive strength.
Resumo:
The zeta potential generated at the interface between cement particle surfaces adsorbed with superplasticisers have been studied using electroacoustic technique, which is capable of measuring zeta potential at high concentrated suspensions. The study has been undertaken to examine the differences in the magnitude of the zeta potential for ordinary Portland cement (OPC) and Portland pozzolanic (fly ash) cement (PPC) pastes along with the differential impacts of different types of superplasticisers on both the varieties of cement pastes. In the latter context, the effects of three different types of superplasticisers namely Ligno Sulphonate (LS), Sulphonated Melamine Formaldehyde (SMF) and Sulphonated Naphthalene Formaldehyde (SNF) have been specifically studied. The results show that the cement pastes with PPC shows better dispersion when compared with the OPC. The paper also endeavors to unfold the relationship and significance of cement interaction with three different superplasticisers.
Resumo:
The aim of this study was to examine the potential of incorporating bovine fibres as a means of reinforcing a typically brittle apatite calcium phosphate cement for vertebroplasty. Type I collagen derived from bovine Achilles tendon was ground cryogenically to produce an average fibre length of 0.96 ± 0.55 mm and manually mixed into the powder phase of an apatite-based cement at 1, 3 or 5 wt.%. Fibre addition of up to 5 wt.% had a significant effect (P = 0.001) on the fracture toughness, which was increased by 172%. Adding =1 wt.% bovine collagen fibres did not compromise the compressive properties significantly, however, a decrease of 39-53% was demonstrated at =3 wt.% fibre loading. Adding bovine collagen to the calcium phosphate cement reduced the initial and final setting times to satisfy the clinical requirements stated for vertebroplasty. The cement viscosity increased in a linear manner (R = 0.975) with increased loading of collagen fibres, such that the injectability was found to be reduced by 83% at 5 wt.% collagen loading. This study suggests for the first time the potential application of a collagen-reinforced calcium phosphate cement as a viable option in the treatment of vertebral fractures, however, issues surrounding efficacious cement delivery need to be addressed. © 2012 Acta Materialia Inc.
Resumo:
The study aim was to develop and apply an experimental technique to determine the biomechanical effect of polymethylmethacrylate (PMMA) and calcium phosphate (CaP) cement on the stiffness and strength of augmented vertebrae following traumatic fracture. Twelve burst type fractures were generated in porcine three-vertebra segments. The specimens were randomly split into two groups (n=6), imaged using microCT and tested under axial loading. The two groups of fractured specimens underwent a vertebroplasty procedure, one group was augmented with CaP cement designed and developed at Queen's University Belfast. The other group was augmented with PMMA cement (WHW Plastics, Hull, UK). The specimens were imaged and re-tested . An intact single vertebra specimen group (n=12) was also imaged and tested under axial loading. A significant decrease (p<0.01) was found between the stiffness of the fractured and intact groups, demonstrating that the fractures generated were sufficiently severe, to adversely affect mechanical behaviour. Significant increase (p<0.01) in failure load was found for the specimen group augmented with the PMMA cement compared to the pre-augmentation group, conversely, no significant increase (p<0.01) was found in the failure load of the specimens augmented with CaP cement, this is attributed to the significantly (p<0.05) lower volume of CaP cement that was successfully injected into the fracture, compared to the PMMA cement. The effect of the percentage of cement fracture fill, cement modulus on the specimen stiffness and ultimate failure load could be investigated further by using the methods developed within this study to test a more injectable CaP cement.
Resumo:
Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.