977 resultados para IR(III) COMPLEXES
Resumo:
The polymerization of methyl methacrylate initiated by a mixed ligand complex. [NN′-ethylenebis(salicylideneiminato)](benzoylacetonato)cobalt(III) has been studied in bulk and in benzene at 70° and 80°. The rate of polymerization is proportional to (concentration of the chelate)1/2 and the monomer exponent is close to 1.5. The activation energy and the kinetic and transfer constants are evaluated. A free radical mechanism has been proposed.
Resumo:
Polymerization of methyl methacrylate in the presence of a mixed ligand complex, [N,N-ethylenebis(salicylideneiminato)](acetylacetonato)cobalt(III) in benzene was studied. The rate of polymerization was proportional to the square root of the concentration of the chelate and the monomer exponent was 1.67 and 1.69 at 60 and 70°C, respectively. The activation energy and the kinetic and transfer constants were evaluated. A free-radical mechanism has been proposed.
Resumo:
The complexes of thiophene 2-thiocarboxamide (TTCA) with some metal chlorides and bromides [M = Ni(II), Zn(II), Cd(II), Hg(II) and Cu(I)] are described. Elemental analyses, magnetic susceptibilities and conductance studies, electronic, IR, proton and 13C magnetic resonance spectra are reported. The results suggest exclusive coordination of TTCA through the thiocarbonyl sulfur. The influence of the thiophene ring on the donor properties of the thioamide are discussed.
Resumo:
THE COMPLEXES of pyridine-l-oxide and 2- and 4-substituted pyridine-l-oxides have been investigated previously[l]. The complexes of 3-substituted pyfidine-l-oxides, however, have received little attention. The rare-earth complexes of pyridine-Ioxide[l, 2], 4-methylpyridine- l-oxide [1] and 2,6- dimethylpyfidine-l-oxide[3,4] have been reported earlier. The present paper deals with the isolation and characterisation of 3-methylpyridine-l-oxide (3-Picoline-N-oxide, 3-PicNO) complexes with rare-earth perchlorates.
Resumo:
Oxovanadium(IV) complexes [VO(L)(B)]Cl-2 (1-3), where L is bis(2-benzimidazolylmethyl)amine and B is 1,10-phenanthroline(phen),dipyrido[3,2-d:2',3'-f]quinoxaline(dpq) or dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been prepared, characterized, and their photo-induced DNA and protein cleavage activity studied. The photocytotoxicity of complex 3 has been studied using adenocarcinoma A549 cells, The phen complex 1, structurally characterized by single-crystal X-ray crystallography, shows the presence of a vanadyl group in six-coordinate VON5 coordination geometry. The ligands L and phen display tridentate and bidentate N-donor chelating binding modes, respectively. The complexes exhibit a d-d band near 740 nm in 15% DMF-Tris-HCl buffer (pH 7.2). The phen and dpq complexes display an irreversible cathodic cyclic voltammetric response near -0.8 V in 20% DMF-Tris-HCl buffer having 0.1 M KCl as supporting electrolyte. The dppz complex 3 exhibits a quasi-reversible voltammogram near -0.6 V (vs SCE) that is assignable to the V(IV)-V(III)couple. The complexes bind to calf thymus DNA giving binding constant values in the range of 6.6 x 10(4)-2.9 x 10(5) M-1. The binding site size, thermal melting and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor ``chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A light of 365 nm via a mechanistic pathway that involves formation of both singlet oxygen and hydroxyl radicals. The complexes show significant photocleavage of DNA in near-IR light (>750 nm) via hydroxyl radical pathway. Among the three complexes, the dppz complex 3 shows significant BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via hydroxyl radical pathway. The dppz complex 3 also exhibits photocytotoxicity in non-small cell lung carcinoma/human lung adenocarcinoma A549 cells giving IC50 value of 17 mu M in visible light(IC50 = 175 mu M in dark).
Resumo:
Dimethyl sulphoxide (DMSO) and dimethyl formamide (DMF) complexes of Mn(III) perchlorate have been prepared and their conductivity, magnetic susceptibility and i.r. and electronic spectra studied. The complexes behave as uni-trivalent electrolytes in acetonitrile. Their magnetic moments of 5·1 B.M. show them to be of high spin type. Infra-red spectra show that oxygen is the donor atom in both complexes. The spin allowed electronic transition for d4 system, around 20,000 cm−1, ascribable to the 5Eg → 5T2g transition, suggests an octahedral configuration for these complexes
Resumo:
Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.
Resumo:
Spectrophotometric and potentiometric investigations have been carried out on copper-diethanolamine system. Job plots at 900, 900 and 580 mμ have indicated the formation of CuD++, CuD2++ and CuD3++. The n- pA curves obtained indicate the formation of CuD++, CuD2++, CuD3++, CuDOH+, CuD2OH+ and CuD3OH+. The n- pA curves have been analyzed to obtain the stability constants of these complexes. Absorption curves of pure complexes have been computed by a graphical method. Gaussian analysis of the absorption curves of pure and hydroxy complexes show the presence of a second band, indicating that the structure is that of a distorted octahedron.
Resumo:
Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.
Resumo:
Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.