938 resultados para INTRAVENOUS TRAMADOL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Intravenous (IV) fluid administration is an integral component of clinical care. Errors in administration can cause detrimental patient outcomes and increase healthcare costs, although little is known about medication administration errors associated with continuous IV infusions. Objectives: ( 1) To ascertain the prevalence of medication administration errors for continuous IV infusions and identify the variables that caused them. ( 2) To quantify the probability of errors by fitting a logistic regression model to the data. Methods: A prospective study was conducted on three surgical wards at a teaching hospital in Australia. All study participants received continuous infusions of IV fluids. Parenteral nutrition and non-electrolyte containing intermittent drug infusions ( such as antibiotics) were excluded. Medication administration errors and contributing variables were documented using a direct observational approach. Results: Six hundred and eighty seven observations were made, with 124 (18.0%) having at least one medication administration error. The most common error observed was wrong administration rate. The median deviation from the prescribed rate was 247 ml/h (interquartile range 275 to + 33.8 ml/ h). Errors were more likely to occur if an IV infusion control device was not used and as the duration of the infusion increased. Conclusions: Administration errors involving continuous IV infusions occur frequently. They could be reduced by more common use of IV infusion control devices and regular checking of administration rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Previous isobolographic analysis revealed that coadministration of morphine and oxycodone produces synergistic antinociception in laboratory rodents. As both opioids can produce ventilatory depression, this study was designed to determine whether their ventilatory effects were synergistic when coadministered to healthy human subjects. Methods A placebo-controlled, randomized, crossover study was performed in 12 male volunteers. Ventilatory responses to hypoxaemia and hypercapnia were determined from 1-h intravenous infusions of saline ('placebo'), 15 mg morphine sulphate (M), 15 mg oxycodone hydrochloride (O), and their combination in the dose ratios of 1 : 2, 1 : 1, 2 : 1. Drug and metabolite concentrations in serial peripheral venous blood samples were measured by high-performance liquid chromatography-MS/MS. Results 'Placebo' treatment was without significant ventilatory effects. There were no systematic differences between active drug treatments on either the slopes or intercepts of the hypoxaemic and hypercapnia ventilation responses. During drug treatment, the mean minute ventilation at PETCO2 = 55 mmHg (V-E55) decreased to 74% of the subjects' before treatment values (95% confidence interval 62, 87), 68% (57, 80), 69% (59, 79), 68% (63, 73), and 61% (52, 69) for M15, M10/O5, M7.5/O7.5, M5/O10 and O15, respectively. Recovery was more prolonged with increasing oxycodone doses, corresponding to its greater potency and lower clearance compared with morphine. Conclusions Although adverse ventilatory effects of these drugs were found as expected, no unexpected or disproportionate effects of any of the morphine and oxycodone treatments were found that might impede their use in combination for pain management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+](i)) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+](i), which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+](i) transients was 28 muM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. 3 In fura-2-loaded neurons, voltage clamped at -60mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 muM) simultaneously inhibited nAChR-induced increases in [Ca2+](i) and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by - 40% at - 120, -80 and -40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+](i) by similar to40%. 5 Thiopental (25 muM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+](i), indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. 6 Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 muM), pentobarbital (50 muM) and ketamine (10 muM). 7 In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+](i) transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To develop an appropriate dosing strategy for continuous intravenous infusions (CII) of enoxaparin by minimizing the percentage of steady-state anti-Xa concentration (C-ss) outside the therapeutic range of 0.5-1.2 IU ml(-1). Methods A nonlinear mixed effects model was developed with NONMEM (R) for 48 adult patients who received CII of enoxaparin with infusion durations that ranged from 8 to 894 h at rates between 100 and 1600 IU h(-1). Three hundred and sixty-three anti-Xa concentration measurements were available from patients who received CII. These were combined with 309 anti-Xa concentrations from 35 patients who received subcutaneous enoxaparin. The effects of age, body size, height, sex, creatinine clearance (CrCL) and patient location [intensive care unit (ICU) or general medical unit] on pharmacokinetic (PK) parameters were evaluated. Monte Carlo simulations were used to (i) evaluate covariate effects on C-ss and (ii) compare the impact of different infusion rates on predicted C-ss. The best dose was selected based on the highest probability that the C-ss achieved would lie within the therapeutic range. Results A two-compartment linear model with additive and proportional residual error for general medical unit patients and only a proportional error for patients in ICU provided the best description of the data. Both CrCL and weight were found to affect significantly clearance and volume of distribution of the central compartment, respectively. Simulations suggested that the best doses for patients in the ICU setting were 50 IU kg(-1) per 12 h (4.2 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). The best doses for patients in the general medical unit were 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 100 IU kg(-1) per 12 h (8.3 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). These best doses were selected based on providing the lowest equal probability of either being above or below the therapeutic range and the highest probability that the C-ss achieved would lie within the therapeutic range. Conclusion The dose of enoxaparin should be individualized to the patients' renal function and weight. There is some evidence to support slightly lower doses of CII enoxaparin in patients in the ICU setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To identify an appropriate dosage strategy for patients receiving enoxaparin by continuous intravenous infusion (CII). Methods: Monte Carlo simulations were performed in NONMEM, (200 replicates of 1000 patients) to predict steady state anti-Xa concentrations (Css) for patients receiving a CII of enoxaparin. The covariate distribution model was simulated based on covariate demographics in the CII study population. The impact of patient weight, renal function (creatinine clearance (CrCL)) and patient location (intensive care unit (ICU)) were evaluated. A population pharmacokinetic model was used as the input-output model (1-compartment first order output model with mixed residual error structure). Success of a dosing regimen was based on the percent of Css that is between the therapeutic range of 0.5 IU/ml to 1.2 IU/ml. Results: The best dose for patients in the ICU was 4.2IU/kg/h (success mean 64.8% and 90% prediction interval (PI): 60.1–69.8%) if CrCL60ml/min, the best dose was 8.3IU/kg/h (success mean 65.4%, 90% PI: 58.5–73.2%). Simulations suggest that there was a 50% improvement in the success of the CII if the dose rate for ICU patients with CrCL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Little is known about the pharmacokinetics of potassium canrenoate/canrenone in paediatric patients WHAT THIS STUDY ADDS • A population pharmacokinetic model has been developed to evaluate the pharmacokinetics of canrenone in paediatric patients who received potassium canrenoate as part of their therapy in the intensive care unit. AIMS To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate to paediatric patients. METHODS Data were collected prospectively from 23 paediatric patients (2 days to 10 years of age; median weight 4 kg, range 2.16–28.0 kg) who received intravenous potassium canrenoate (K-canrenoate) as part of their intensive care therapy for removal of retained fluids, e.g. in pulmonary oedema due to chronic lung disease and for the management of congestive heart failure. Plasma samples were analyzed by HPLC for determination of canrenone (the major metabolite and pharmacologically active moiety) and the data subjected to pharmacokinetic analysis using NONMEM. RESULTS A one compartment model best described the data. The only significant covariate was weight (WT). The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) were CL/F (l h−1) = 11.4 × (WT/70.0)0.75 and V/F (l) = 374.2 × (WT/70) where WT is in kg. The values of CL/F and V/F in a 4 kg child would be 1.33 l h−1 and 21.4 l, respectively, resulting in an elimination half-life of 11.2 h. CONCLUSIONS The range of estimated CL/F in the study population was 0.67–7.38 l h−1. The data suggest that adjustment of K-canrenoate dosage according to body weight is appropriate in paediatric patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background To determine the pharmacokinetics (PK) of a new i.v. formulation of paracetamol (Perfalgan) in children ≤15 yr of age. Methods After obtaining written informed consent, children under 16 yr of age were recruited to this study. Blood samples were obtained at 0, 15, 30 min, 1, 2, 4, 6, and 8 h after administration of a weight-dependent dose of i.v. paracetamol. Paracetamol concentration was measured using a validated high-performance liquid chromatographic assay with ultraviolet detection method, with a lower limit of quantification (LLOQ) of 900 pg on column and an intra-day coefficient of variation of 14.3% at the LLOQ. Population PK analysis was performed by non-linear mixed-effect modelling using NONMEM. Results One hundred and fifty-nine blood samples from 33 children aged 1.8–15 yr, weight 13.7–56 kg, were analysed. Data were best described by a two-compartment model. Only body weight as a covariate significantly improved the goodness of fit of the model. The final population models for paracetamol clearance (CL), V1 (central volume of distribution), Q (inter-compartmental clearance), and V2 (peripheral volume of distribution) were: 16.51×(WT/70)0.75, 28.4×(WT/70), 11.32×(WT/70)0.75, and 13.26×(WT/70), respectively (CL, Q in litres per hour, WT in kilograms, and V1 and V2 in litres). Conclusions In children aged 1.8–15 yr, the PK parameters for i.v. paracetamol were not influenced directly by age but were by total body weight and, using allometric size scaling, significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To describe the effect of age and body size on enantiomer selective pharmacokinetic (PK) of intravenous ketorolac in children using a microanalytical assay. Methods: Blood samples were obtained at 0, 15 and 30 min and at 1, 2, 4, 6, 8 and 12 h after a weight-dependent dose of ketorolac. Enantiomer concentration was measured using a liquid chromatography tandem mass spectrometry method. Non-linear mixed-effect modelling was used to assess PK parameters. Key findings: Data from 11 children (1.7–15.6 years, weight 10.7–67.4 kg) were best described by a two-compartment model for R(+), S(−) and racemic ketorolac. Only weight (WT) significantly improved the goodness of fit. The final population models were CL = 1.5 × (WT/46)0.75, V1 = 8.2 × (WT/46), Q = 3.4 × (WT/46)0.75, V2 = 7.9 × (WT/46), CL = 2.98 × (WT/46), V1 = 13.2 × (WT/46), Q = 2.8 × (WT/46)0.75, V2 = 51.5 × (WT/46), and CL = 1.1 × (WT/46)0.75, V1 = 4.9 × (WT/46), Q = 1.7 × (WT/46)0.75 and V2 = 6.3 × (WT/46)for R(+), S(−) and racemic ketorolac. Conclusions: Only body weight influenced the PK parameters for R(+) and S(−) ketorolac. Using allometric size scaling significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).