991 resultados para INTEGRACIÓN VERTICAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] La parte documentada consta de un edificio independiente (que no exento) que corresponde a la antigua hospedería, que tiene unas dimensiones de 25x15 metros y está formado por ocho espacios abovedados. En la fachada exterior Norte tiene adosada la denominada «Fuente de Felipe II». Por otro lado, los «aposentos del arcediano» consisten en una entrada al claustro por la conocida como «Puerta de los Caballeros» que es un espacio abovedado de 6 x 6 metros que da también acceso a una estancia rectangular de 12 x 6 metros que actualmente se utiliza como capilla. Este espacio cuenta también con varias vidrieras que también se han documentado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]En la Comunidad Autónoma Vasca se han tomado una serie de decisiones estratégicas materializadas en diversas políticas, planes institucionales e iniciativas con el objeto de integrar, usar e innovar con TIC en las escuelas. Desde iniciativas pretéritas centradas básicamente en la dotación de infraestructuras, pasando por el perfeccionamiento del profesorado, actualmente existe un modelo que intenta unir de facto la política de infraestructura y la formación del los docentes para una utilización eficiente de las TIC. La descripción y el análisis del impacto de las mismas en el entorno escolar es el objetivo de esta investigación. En este estudio se ha llevado a cabo una metodología de corte cualitativo basada en la recogida de ideas, opiniones y valoraciones de políticos, técnicos, directores de centros, así como de profesores mediante entrevistas en profundidad (N=25). Los diferentes agentes educativos entrevistados reconocen que a día de hoy el modelo propuesto que unifica lo tecnológico, lo psicopedagógico y lo organizativo adolece de falta de información eficaz y de financiación impidiendo claramente un impacto real en las escuelas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytoplankton distribution of the Shen Reservoir, Bukuru in the Jos Plateau, Nigeria was monitored at 6 depths. Higher floral abundance occurred within the upper 00-03 meters with highest values at the first 1 meter. Bacillariophyceae and Dinophyceae recorded higher values in March-April with lower values in July and January respectively. Phytoplankton were most abundant in the rainy season. Secchi disc transparency was lowest in the peak of the rainy season (July) due to higher levels of suspended matter resulting from the increased run-off from surrounding farmlands of allochthonous materials as well as higher levels of phytoplankton population arising from the former factor. The low water temperature of December/January 15 degree C plus or minus 2 degree C might have depressed growth among the major groups of plankters but enhanced rapid multiplication of the Chlorophyta, Trachelomonas which showed a bloom at this season

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slip-line field solutions are presented for the ultimate load of submarine pipelines on a purely cohesive soil obeying Tresca yield criterion, taking into account of pipe embedment and pipe-soil contact friction. The derived bearing capacity factors for a smooth pipeline degenerate into those for the traditional strip-line footing when the embedment approaches zero. Parametric studies demonstrate that the bearing capacity factors for pipeline foundations are significantly influenced by the pipeline embedment and the pipe-soil frictional coefficient. With the increase of pipeline embedment, the bearing capacity factor Nc decreases gradually, and finally reaches the minimum value (4.0) when the embedment equals to pipeline radius. As such, if the pipeline is directly treated as a traditional strip footing, the bearing capacity factor Nc would be over evaluated. The ultimate bearing loads increase with increasing pipeline embedment and pipe-soil frictional coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Experiments to determine the vertical static bearing capacity are carried out first in laboratory which is taken as a reference for choosing the amplitudes of vertical dynamic loading. Then a series of experiments are carried out to study the influences of factors, such as the scales of bucket, the amplitude and frequency of loading, the density of soils etc.. According to the experimental results, the responses of bucket foundations in calcareous sand under vertical dynamic loadings are analyzed. It is shown that there exists a limited effected zone under vertical dynamic loading. The scale of this zone is about one times of the bucket’s height. In this zone, the density of soil layer, the deformation and the pore pressure change obviously.