995 resultados para IMPLANT-SUPPORTED OVERDENTURES
Resumo:
The oral rehabilitation has achieved great prominence in the dental implant, especially in the cases of reposition of units dental elements, so it is possible to replace each missing element to implant into your space where the tooth was loss. The reverse planning is fundamental to an appropriate rehabilitation, because promote the elimination of problems that might compromise the aesthetics and function of future dental implants. The objective of this study was to report the treatment plan for a patient in need of oral rehabilitation with implant dental prosthesis, using indications and techniques based on the literature, emphasizing the importance of reverse planning. We conducted an osseointegrated implant surgery using the principles of a connect procedure, thus allowing their successfully installing increasing the predictability of treatment. It is concluded that the success of rehabilitation treatment is directly related to the initial planning, a correct clinical approach and an integrated multidisciplinary team.
Resumo:
The maintenance of Implant-supported Prosthesis is essential to the success of dental implants. Therefore, the aim of the study was to conduct a review the literature addressing maintenance Implant-Supported Prosthesis in order to guide planning for the longevity of oral rehabilitation. We conducted a detailed search strategy for the Pubmed / Medline Dentistry and Oral Science, used as descriptors: “Oral Hygiene“ and “Dental Implant until July, 2013. The results were grouped together in topics (Clinical Exam and Oral Hygiene) and discussed. Conclusion: A regular maintenance program for oral patient implantprosthesis is essential to the longevity of the treatment. Different methods and devices are effective for cleansing. However one orientation (in writing) must be offered to patients, since inadequate cleaning can create regions of abrasion on the surfaces of abutments and dental implants.
Resumo:
The purpose of this study was to analyze the biomechanical interactions in bone tissue between short implants and implant-supported crowns with different heights. Two models were made using the programs InVesalius 3.0, Rhinoceros 4.0 and Solidworks 2010. The models were established from a bone block with the short implant (3.75 x 8.5 mm) with geometry Morse taper connection (MT). The height of the crown (cemented) was set at 10.0 mm and 15.00 mm. The models were processed by programs and 10 NEiNastran Femap 10.0. The force applied was 200N (vertical) and 100N (oblique). The results were plotted on maps Voltage Maximum Principal. Statistical analysis was performed using ANOVA. The results showed that the increase in crown height, increased stress concentration in the crown of 15 mm under oblique loading (p <0.001), the oblique loading has significantly expanded the area of stress concentration (p <0.001). Conclusion:the increase of the crown increased the stress concentration, being statistically significant for short implants Morse taper. The mesial and distal region had the highest concentration of stresses under oblique loading. The oblique loading was more harmful when compared with axial loading, being statistically significant.
Resumo:
The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.
Resumo:
Rehabilitation of edentulous patients has been a challenge for professionals since the primary concepts and fundaments of occlusal rehabilitation. However, this philosophy has been improved by implant-supported fixed dentures that represent a predictable clinical modality on modern dentistry. Nevertheless, considering that the traditional protocol requires a long period for bone healing and definitive rehabilitation, immediate loading of implants has been advantageous for functional and esthetic rehabilitation of patients in a reduced period. The aim of this study is to discuss the biomechanical and functional fundaments of occlusion for implant-supported fixed dentures with mediate and immediate loading to provide clinical evidences for longevity of this treat ment modality based on the current literature. According to this, some prerequisites as proper bone quality, excellent primary stability, sufficient number of implants, rigid splinting, and control and mastering of biomechanical fundamentals of static and dynamic occlusion are mandatory for treatment predictability and longevity.
Resumo:
The combination of several methods for solving aesthetics in a clinical case can be a complicating factor. The diagnosis and planning of the event held in conjunction with the dental technician expand the possibilities of success. The present case illustrates the aesthetic resolution through the association of implant- and tooth-supported prostheses using metal free ceramic systems. A 38-year old male patient presented with a complex smile. After diagnosis and treatment planning, two ceramic crowns were made, one on tooth 11 and one on the implant region 21, along with a laminated porcelain veneer on the region of 12. Aesthetic needs of the patient are predictable only with a sound diagnosis.
Resumo:
PURPOSE: In view of reports in the literature on the benefits achieved with the use of platform switching, described as the use of an implant with a larger diameter than the abutment diameter, the goal being to prevent the (previously) normal bone loss down to the first thread that occurs around most implants, thus enhancing soft tissue aesthetics and stability and the need for implant inclination due to bone anatomy in some cases, the aim of this study was to evaluate bone stress distribution on peri-implant bone, by using three-dimensional finite element analysis to simulate the influence of implants with different abutment angulations (0 and 15 degrees) in platform switching. METHODS: Four mathematical models of an implant-supported central incisor were created with varying abutment angulations: straight abutment (S1 and S2) and angulated abutment at 15 degrees (A1 and A2), submitted to 2 loading conditions (100 N): S1 and A1-oblique loading (45 degrees) and S2 and A2-axial loading, parallel to the long axis of the implant. Maximum (σmax) and minimum (σmin) principal stress values were obtained for cortical and trabecular bone. RESULTS: Models S1 and A1 showed higher σmax in cortical and trabecular bone when compared with S2 and A2. The highest σmax values (in MPa) in the cortical bone were found in S1 (28.5), followed by A1 (25.7), S2 (11.6), and A2 (5.15). For the trabecular bone, the highest σmax values were found in S1 (7.53), followed by A1 (2.87), S2 (2.85), and A2 (1.47). CONCLUSIONS: Implants with straight abutments generated the highest stress values in bone. In addition, this effect was potentiated when the load was applied obliquely.
Resumo:
The present article describes the treatment planning and fabrication of overlay denture to restore the jaw relationship in a partial edentulous patient with bruxism. A male patient, 51 years old, was referred to the oral rehabilitation clinic complaining about the chewing and aesthetic. The occlusal surface of the superior teeth presented severe wear. The fabrication of an interim overlay denture to restore the jaw relationship was planned. The overlay had metallic projections and covered the occlusal surface of superior teeth. After overlay insertion both function and aesthetic of the patient were recovered. It was concluded that the use of overlay improved the physiological normal position of the jaw and could provide a favorable prognosis for a definitive oral rehabilitation with implant-supported fixed denture.
Resumo:
Próteses sobre implantes esteticamente favoráveis estão diretamente relacionadas com a condição dos tecidos moles e duros que as envolvem. A preservação dos tecidos mucogengivais ao redor de implantes dentários instalados na maxila anterior propicia um sorriso harmonioso, com uma estética bastante agradável. No entanto, em alguns casos, isso não ocorre principalmente pela grande reabsorção tecidual na região, na qual deveria ter sido realizado enxerto ósseo, antes mesmo da instalação dos implantes. Desse modo, o objetivo deste trabalho foi apresentar uma solução reabilitadora estética para essas possíveis falhas durante o planejamento com reabilitações sobre implantes, por meio de gengiva artificial cerâmica.
Resumo:
Objective: The use of methods for tissue regeneration has been widely applied in Implantology, in clinical situations with disabilities or anatomical limitations that prevent the placement of osseointegrated dental implants. The evolution of the development of biomaterials revolutionized this therapeutic modality, facilitating the resolution of clinical cases with tissue deficiencies. Thus, this study aimed to describe a clinical case approaching the methods, techniques, and materials used in guided bone regeneration applied to Implantology. Case report: A clinical case of a patient who received a Morse taper dental implant (region 15) is described. The use of biomaterial and membrane on the buccal wall of the socket was required. After the osseointegration period, a reopening surgery was performed, and an immediate provisional implant was produced. After 2 months of follow-up, the final prosthesis was made involving other adjacent elements. Final considerations: The guided bone regeneration technique employed showed satisfactory performance. The patient was positive regarding esthetics and function. However, more controlled studies with longer follow-up period are needed for analyses of predictability
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
The aim of this study was to evaluate the influence of implant angulation and abutment type (UCLA and Estheticone) on stress distribution in screw-retained implant-supported prostheses through photoelasticity. Three models were fabricated with photoelastic resin PL-2 (Vishay, Micro-Measurements Group, Inc Raleigh, N.C., USA) containing one external hexagon implant with 3.75x10mm (Master screw, Conexão Sistemas de Prótese Ltda., Arujá, São Paulo) with 0°, 17° and 30° degrees and a screw-retained prostheses with UCLA and Estheticone abutments. The assembly was positioned in a circular polariscope; axial and oblique (45° degrees) loads of 100N were applied in fixed points on the occlusal crown surfaces by a universal testing machine. The stress generated was photographed and analyzed qualitatively with appropriate software (Adobe Photoshop®). The results demonstrated the same number of fringes for both abutment types for each angulation, with fringes increasing in the same way. A higher number of fringes were closer in the oblique loading mode. It was concluded that there was no significant difference in stress distribution in prostheses with UCLA and Estheticone abutments. Higher stress concentrations were observed with increased implant angulation. Stress concentration and intensity were higher in the oblique load than in axial load application.
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
OBJECTIVE: The aim of this study was to gather information and discuss the predictability of implant-supported prostheses in patients with bruxism by performing a literature review. METHODS: In order to select the studies included in this review, a detailed search was performed in PubMed and Medline databases, using the following key words: bruxism, dental implants, implant supported prosthesis, and dental restoration failure. Items that were included are: case reports, randomized controlled trials, in vitro studies, literature and systematic reviews, with or without meta-analysis, of the last 20 years that addressed the theme. Articles without abstracts, animal studies, articles in languages other than English and articles from journals unrelated to the dental field were excluded. RESULTS: after analysis according to inclusion and exclusion criteria, 28 articles were selected from a total of 54. It is known from the array of scientific articles which have assessed, either through retrospective, prospective or experimental studies, that the biomechanical and biological impact of bruxism on implant-supported prostheses is small, and that the literature has contributed little to exemplify the prosthetic limits of safety for the specialist from a clinical point of view. CONCLUSION: Although there is still no general consensus on this matter, most of the literature review articles do provide clinical guidelines that contribute to implant supported prostheses longevity and stability in patients with bruxism.
Resumo:
Introduction: The oral rehabilitation with dental implants is a very viable treatment modality for patients. Therefore the discovery of osseointegration, dentistry has reached the trigger with respect to treatment with a high predictability of success. For this various principles, since the surgical protocols, the choice of material and even the technique for the manufacture of implant-supported prosthesis influence a good prognosis for treatment. Objective: Therefore, it is proposed this study a literature review of the fundamentals of osseointegration, explaining the historical and technical parameters of implantology, focusing in what the literature currently is studying with more intensity, the acceleration of osseointegration. Conclusion:well conducted procedures promotes the best aimed success in implantology. Rough surfaces shows great are for implant-bone contact and better mechanical results. The bone quality is fundamental in results foresigh.