384 resultados para IMMUNOCYTOCHEMISTRY
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Introduction: Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are strongly associated with tissue destruction because of inflammation. In this study, we investigated the expression of MMPs and TIMPs messenger RNA and protein levels in apical periodontitis lesions. Methods: Tissue samples from patients presenting clinical signs of chronic apical abscess (CAA) or asymptomatic apical periodontitis (AAP) were collected postoperatively and used for gene expression analysis of MMP-2, -3, -7, -9, -14, -16, and -25; TIMP-1; and TIMP-2 in real-time polymerase chain reaction. Immunohistochemistry was also performed to detect the expression of MMP-7 and TIMP-1 proteins. Lastly, U-937 cells were induced to terminal differentiation into macrophages, infected with purified Escherichia coli lipopolysaccharide, and assessed for the expression of MMP-7 and TIMP-1 using immunocytochemistry and confocal microscopy. Results: Significantly higher messenger RNA levels were found for all genes in AAP and CAA samples when compared with healthy control samples (P < .001). AAP cases exhibited significantly higher TIMP-1 when compared with CAA cases, whereas CAA cases showed higher MMP-2, MMP-7, and MMP-9 messenger RNA levels (P < .05). We also detected positive the expression of MMP-7 and TIMP-1 proteins in the tissue samples. The expression of both MMP-7 and TIMP-1 were increased in lipopolysaccharide-stimulated cells compared with nonstimulated cells and appear to colocalize in the Golgi apparatus. Conclusions: MMPs appear to have an influential role in CAA cases in which ongoing tissue destruction is observed. TIMPs are preferentially associated with AAP, perhaps as a subsequent defense mechanism against excessive destruction. Taken together, our findings implicate MMP and TIMP molecules in the dynamics of inflammatory periapical lesion development
Resumo:
Background Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)2D3 (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)2D3 in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)2D3 at concentrations that can be attained in vivo. Methods Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)2D3 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)2D3 0.5nM, using RT-qPCR, western blot or immunocytochemistry. Results 1,25(OH)2D3 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)2D3 near physiological concentration. Genes up-modulated by both 1,25(OH)2D3 concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)2D3 was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)2D3 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)2D3 0.5nM was detected. Conclusions In breast cancer specimens a short period of 1,25(OH)2D3 exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)2D3 effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment.
Resumo:
Objective: Central to the process of osseointegration is the recruitment of mesenchymal progenitor cells to the healing site, their proliferation and differentiation to bone synthesising osteoblasts. The process is under the control of pro-inflammatory cytokines and growth factors. The aim of this study was to monitor these key stages of osseointegration and the signalling milieu during bone healing around implants placed in healthy and diabetic bone. Methods: Implants were placed into the sockets of incisors extracted from the mandibles of normal Wistar and diabetic Goto-Kakizaki rats. Mandibles 1-12 weeks post-insertion of the implant were examined by histochemistry and immunocytochemistry to localise the presence of Stro-1- positive mesenchymal progenitor cells, proliferating cellular nuclear antigen proliferative cells, osteopontin and osteocalcin, macrophages, pro-inflammatory cytokines interleukin (IL)-1 , IL-6, tumour necrosis factor (TNF)- and tumour growth factor (TGF)- 1. Image analysis provided a semi-quantification of positively expressing cells. Results: Histological staining identified a delay in the formation of mineralised bone around implants placed in diabetic animals. Within the diabetic bone, the migration of Stro-1 mesenchymal cells in the healing tissue appeared to be unaffected. However, in the diabetic healing bone, the onset of cell proliferation and osteoblast differentiation were delayed and subsequently prolonged compared with normal bone. Similar patterns of change were observed in diabetic bone for the presence of IL-1 , TNF- , macrophages and TGF- 1. Conclusion: The observed alterations in the extracellular presence of pro-inflammatory cytokines, macrophages and growth factors within diabetic tissues that correlate to changes in the signalling milieu, may affect the proliferation and differentiation of mesenchymal progenitor cells in the osseointegration process. To cite this article: Colombo JS, Balani D, Sloan AJ, St Crean J, Okazaki J, Waddington RJ. Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats Clin. Oral Impl. Res22, 2011; 578-586 doi: 10.1111/j.1600-0501.2010.01992.x.
Resumo:
The ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol, phospholipids, and other lipophilic molecules across cellular membranes. Recent data provide evidence that ABCA1 plays an important role in placental function but the exact cellular sites of ABCA1 action in the placenta remain controversial. To clarify this issue, we analyzed the cellular and subcellular localization of ABCA1 with immunocytochemistry, immunofluorescence and subsequent confocal or immunofluorescence microscopy in different types of isolated primary placenta cells: cytotrophoblast cells, amnion epithelial cells, villous macrophages (Hofbauer cells), and mesenchymal cells isolated from chorionic membrane and placental villi. After 12 h of cultivation, primary cytotrophoblast cells showed intensive membrane and cytoplasmic staining for ABCA1. After 24 h, with progressive syncytium formation, ABCA1 staining intensity was markedly reduced and ABCA1 was dispersed in the cytoplasm of the forming syncytial layer. In amnion epithelial cells, placental macrophages and mesenchymal cells, ABCA1 was predominantly localized at the cell membrane and cytoplasmic compartments partially corresponding to the endoplasmic reticulum. In these cell types, the ABCA1 staining intensity was not dependent on the cultivation time. In conclusion, ABCA1 shows marked expression levels in diverse placental cell types. The multitopic localization of ABCA1 in diverse human placental cells not all directly involved in materno-fetal exchange suggests that this protein may not only participate in transplacental lipid transport but could have additional regulatory functions.
Resumo:
The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.
Resumo:
An immunohistochemical examination of guinea-pig taste buds in vallate papillae revealed gustducin-immunoreactive cells in the area of von Ebner’s glands, minor salivary glands. Since there have been no reports describing those cells in these locations for other species, we investigated these glands in order both to localize the cells and compare their immunoreactive characteristics with corresponding cells in the vallate taste buds. The gustducin-immunoreactive cells coincided with cells containing no secretory granules in the end portion of the glands, which was supported by the electron-microscopic immunocytochemistry. Double immunofluorescence microscopy confirmed these cells to be entirely immunopositive to type III inositol 1,4,5-triphosphate receptor (IP3R-3), phospholipase Cβ2 (PLCβ2), and villin and also partly immunopositive to neuron-specific enolase (NSE) and calbindin D-28K. The gustducin-immunoreactive cells in the vallate taste buds exhibited completely the same immunoreactivities for these five molecules. Accordingly, the present results give credence to a consideration that the gustducin-immunnoreactive cells in both locations are identical in function(s) e.g., chemo-reception.
Resumo:
Objective:The aim of the study is to determine the neuroglial differentiation potential of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from preterm birth when compared to term delivery.Study Design:The WJ-MSCs from umbilical cords of preterm birth and term controls were isolated and induced into neural progenitors. The cells were analyzed for neuroglial markers by flow cytometry, real-time polymerase chain reaction, and immunocytochemistry. Results:Independent of gestational age, a subset of WJ-MSC displayed the neural progenitor cell markers Nestin and Musashi-1 and the mature neural markers microtubule-associated protein 2, glial fibrillary acidic protein, and myelin basic protein. Neuroglial induction of WJ-MSCs from term and preterm birth resulted in the enhanced transcription of Nestin and Musashi-1.Conclusions:Undifferentiated WJ-MSCs from preterm birth express neuroglial markers and can be successfully induced into neural progenitors similar to term controls. Their potential use as cellular graft in neuroregenerative therapy for peripartum brain injury in preterm birth has to be tested.
Resumo:
Structural remodeling of the myocardium associated with mechanical overload or cardiac infarction is accompanied by the appearance of myofibroblasts. These fibroblast-like cells express alpha-smooth muscle actin (alphaSMA) and have been shown to express connexins in tissues other than heart. The present study examined whether myofibroblasts of cardiac origin establish heterocellular gap junctional coupling with cardiomyocytes and whether ensuing electrotonic interactions affect impulse propagation. For this purpose, impulse conduction characteristics (conduction velocity [theta] and maximal upstroke velocity [dV/dtmax]) were assessed optically in cultured strands of cardiomyocytes, which were coated with fibroblasts of cardiac origin. Immunocytochemistry showed that cultured fibroblasts underwent a phenotype switch to alphaSMA-positive myofibroblasts that expressed connexin 43 and 45 both among themselves and at contact sites with cardiomyocytes. Myofibroblasts affected theta and dV/dtmax in a cell density-dependent manner; a gradual increase of myofibroblast-to-cardiomyocyte ratios up to 7:100 caused an increase of both theta and dV/dtmax, which was followed by a progressive decline at higher ratios. On full coverage of the strands with myofibroblasts (ratio >20:100), theta fell <200 mm/s. This biphasic dependence of theta and dV/dtmax on myofibroblast density is reminiscent of "supernormal conduction" and is explained by a myofibroblast density-dependent gradual depolarization of the cardiomyocyte strands from -78 mV to -50 mV as measured using microelectrode recordings. These findings suggest that myofibroblasts, apart from their role in structural remodeling, might contribute to arrhythmogenesis by direct electrotonic modulation of conduction and that prevention of their appearance might represent an antiarrhythmic therapeutic target.
Resumo:
BACKGROUND ; AIMS: Hints, histidine triad nucleotide-binding proteins, are adenosine monophosphate-lysine hydrolases of uncertain biological function. Here we report the characterization of human Hint2. METHODS: Tissue distribution was determined by real-time quantitative polymerase chain reaction and immunoblotting, cellular localization by immunocytochemistry, and transfection with green fluorescent protein constructs. Enzymatic activities for protein kinase C and adenosine phosphoramidase in the presence of Hint2 were measured. HepG2 cell lines with Hint2 overexpressed or knocked down were established. Apoptosis was assessed by immunoblotting for caspases and by flow cytometry. Tumor growth was measured in SCID mice. Expression in human tumors was investigated by microarrays. RESULTS: Hint2 was predominantly expressed in liver and pancreas. Hint2 was localized in mitochondria. Hint2 hydrolyzed adenosine monophosphate linked to an amino group (AMP-pNA; k(cat):0.0223 s(-1); Km:128 micromol/L). Exposed to apoptotic stress, fewer HepG2 cells overexpressing Hint2 remained viable (32.2 +/- 0.6% vs 57.7 +/- 4.6%), and more cells displayed changes of the mitochondrial membrane potential (87.8 +/- 2.35 vs 49.7 +/- 1.6%) with more cleaved caspases than control cells. The opposite was observed in HepG2 cells with knockdown expression of Hint2. Subcutaneous injection of HepG2 cells overexpressing Hint2 in SCID mice resulted in smaller tumors (0.32 +/- 0.13 g vs 0.85 +/- 0.35 g). Microarray analyses revealed that HINT2 messenger RNA is downregulated in hepatocellular carcinomas (-0.42 +/- 0.58 log2 vs -0.11 +/- 0.28 log2). Low abundance of HINT2 messenger RNA was associated with poor survival. CONCLUSION: Hint2 defines a novel class of mitochondrial apoptotic sensitizers down-regulated in hepatocellular carcinoma.
Resumo:
Lightmicroscopical (LM) and electron microscopi cal (EM) techniques, have had a major influence on the development and direction of cell biology, and particularly also on the investigation of complex host-parasite relationships. Earlier, microscopy has been rather descriptive, but new technical and scientific advances have changed the situation. Microscopy has now become analytical, quantitative and three-dimensional, with greater emphasis on analysis of live cells with fluorescent markers. The new or improved techniques that have become available include immunocytochemistry using immunogold labeling techniques or fluorescent probes, cryopreservation and cryosectioning, in situ hybridization, fluorescent reporters for subcellular localization, micro-analytical methods for elemental distribution, confocal laser scanning microscopy, scanning tunneling microscopy and live-imaging. Taken together, these tools are providing both researchers and students with a novel and multidimensional view of the intricate biological processes during parasite development in the host.
Resumo:
The glutamate transporters GLT-1 and GLAST are widely expressed in astrocytes in the brain where they fulfill important functions during glutamatergic neurotransmission. The present study examines their distribution in peripheral organs using in situ hybridization (ISH) and immunocytochemistry. GLAST was found to be more widely distributed than GLT-1. GLAST was expressed primarily in epithelial cells, cells of the macrophage-lineage, lymphocytes, fat cells, interstitial cells, and salivary gland acini. GLT-1 was primarily expressed in glandular tissue, including mammary gland, lacrimal gland, and ducts and acini in salivary glands, but also by perivenous hepatocytes and follicular dendritic cells in spleen and lymph nodes. The findings demonstrate that, although expressed by the same cells in the brain, these two glutamate transporters have different distribution patterns in peripheral tissues and that they fulfill glutamate transport functions apart from glutamatergic neurotransmission in these areas.
Resumo:
Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.
Resumo:
A derivative (EMD) of enamel matrix proteins (EMPs) is used for periodontal regeneration because EMPs are believed to induce the formation of acellular extrinsic fiber cementum (AEFC). Other reports, however, indicate that EMPs have osteogenic potential. The aim of this study was to characterize the nature of the tissue that forms on the root surface following application of EMD. Ten human teeth affected by periodontitis and scheduled for extraction were treated with EMD. Four to six weeks later, they were extracted and processed for analysis by light microscopy and transmission electron microscopy. Immunocytochemistry with antibodies against bone sialoprotein (BSP) and osteopontin (OPN) was performed to determine the mineralization pattern. The newly formed tissues on the root were thick and contained embedded cells. Small mineralization foci were regularly seen, and large organic matrix patches were occasionally seen, but a distinct mineralization front was lacking. While labeling for BSP was always associated with small mineralization foci and large matrix patches, OPN labeling was seen inconsistently. It is concluded that tissues resembling either cellular intrinsic fiber cementum or a type of bone were observed. The mineralization pattern mostly resembled that found in bone, except for a few areas that exhibited a hitherto undescribed mineralization pattern.