796 resultados para Hofstede’s Cultural Dimension Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice.We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation η and η + dη, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria afflicts 300 million people worldwide, with over a million deaths every year. With no immediate prospect of a vaccine against the disease, drugs are the only choice to treat it. Unfortunately, the parasite has become resistant to most antimalarials, restricting the option to use artemisinins (ARTs) for effective cure. With the use of ARTs as the front-line antimalarials, reports are already available on the possible resistance development to these drugs as well. Therefore, it has become necessary to use ART-based combination therapies to delay emergence of resistance. It is also necessary to discover new pharmacophores to eventually replace ART. Studies in our laboratory have shown that curcumin not only synergizes with ART as an antimalarial to kill the parasite, but is also uniquely able to prime the immune system to protect against parasite recrudescence in the animal model. The results indicate a potential for the use of ART curcumin combination against recrudescence/relapse in falciparum and vivax malaria. In addition, studies have also suggested the use of curcumin as an adjunct therapy against cerebral malaria. In this review we have attempted to highlight these aspects as well as the studies directed to discover new pharmacophores as potential replacements for ART.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the possibility of projecting low-dimensional chaos from spatiotemporal dynamics of a model for a kind of plastic instability observed under constant strain rate deformation conditions. We first discuss the relationship between the spatiotemporal patterns of the model reflected in the nature of dislocation bands and the nature of stress serrations. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatiotemporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low-dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space-independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a continuation of our efforts to quantify the irregular scalar stress signals from the Ananthakrishna model for the Portevin-Le Chatelier instability observed under constant strain rate deformation conditions. Stress related to the spatial average of the dislocation activity is a dynamical variable that also determines the time evolution of dislocation densities. We carry out detailed investigations on the nature of spatiotemporal patterns of the model realized in the form of different types of dislocation bands seen in the entire instability domain and establish their connection to the nature of stress serrations. We then characterize the spatiotemporal dynamics of the model equations by computing the Lyapunov dimension as a function of the drive parameter. The latter scales with the system size only for low strain rates, where isolated dislocation bands are seen, and at high strain rates, where fully propagating bands are seen. At intermediate applied strain rates corresponding to the partially propagating bands, the Lyapunov dimension exhibits two distinct slopes, one for small system sizes and another for large. This feature is rationalized by demonstrating that the spatiotemporal patterns for small system sizes are altered from the partially propagating band types to isolated burst type. This in turn allows us to reconfirm that low-dimensional chaos is projected from the stress signals as long as there is a one-to-one correspondence between the bursts of dislocation bands and the stress drops. We then show that the stress signals in the regime of partially to fully propagative bands have features of extensive chaos by calculating the correlation dimension density. We also show that the correlation dimension density also depends on the system size. A number of issues related to the system size dependence of the Lyapunov dimension density and the correlation dimension density are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recession flows in a basin are controlled by the temporal evolution of its active drainage network (ADN). The geomorphological recession flow model (GRFM) assumes that both the rate of flow generation per unit ADN length (q) and the speed at which ADN heads move downstream (c) remain constant during a recession event. Thereby, it connects the power law exponent of -dQ/dt versus Q (discharge at the outlet at time t) curve, , with the structure of the drainage network, a fixed entity. In this study, we first reformulate the GRFM for Horton-Strahler networks and show that the geomorphic ((g)) is equal to D/(D-1), where D is the fractal dimension of the drainage network. We then propose a more general recession flow model by expressing both q and c as functions of Horton-Strahler stream order. We show that it is possible to have = (g) for a recession event even when q and c do not remain constant. The modified GRFM suggests that is controlled by the spatial distribution of subsurface storage within the basin. By analyzing streamflow data from 39 U.S. Geological Survey basins, we show that is having a power law relationship with recession curve peak, which indicates that the spatial distribution of subsurface storage varies across recession events. Key Points The GRFM is reformulated for Horton-Strahler networks. The GRFM is modified by allowing its parameters to vary along streams. Sub-surface storage distribution controls recession flow characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a system of hard-core boson on a one-dimensional lattice with frustrated next-nearest-neighbor hopping and nearest-neighbor interaction. At half filling, for equal magnitude of nearest- and next-nearest-neighbor hopping, the ground state of this system exhibits a first-order phase transition from a bond-ordered solid to a charge-density-wave solid as a function of the nearest- neighbor interaction. Moving away from half filling we investigate the system at incommensurate densities, where we find a supersolid phase which has concurrent off-diagonal long-range order and density-wave order which is unusual in a system of hard-core bosons in one dimension. Using the finite-size density-matrix renormalization group method, we obtain the complete phase diagram for this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Published as an article in: Studies in Nonlinear Dynamics & Econometrics, 2004, vol. 8, issue 3, article 6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Berta Raposo Fernández e Ingrid García Wistädt (editoras)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A physical model is presented to describe the kinds of static forces responsible for adhesion of nano-scale copper metal particles to silicon surface with a fluid layer. To demonstrate the extent of particle cleaning, Received in revised form equilibrium separation distance (ESD) and net adhesion force (NAF) of a regulated metal particle with different radii (10-300 nm) on the silicon surface in CO2-based cleaning systems under different pressures were simulated. Generally, increasing the pressure of the cleaning system decreased the net adhesion force between spherical copper particle and silicon surface entrapped with medium. For CO2 + isopropanol cleaning system, the equilibrium separation distance exhibited a maximum at temperature 313.15 K in the Equilibrium separation distance regions of pressure space (1.84-8.02 MPa). When the dimension of copper particle was given, for example, High pressure 50 nm radius particles, the net adhesion force decreased and equilibrium separation distance increased with increased pressure in the CO2 + H2O cleaning system at temperature 348.15 K under 2.50-12.67 MPa pressure range. However, the net adhesion force and equilibrium separation distance both decreased with an increase in surfactant concentration at given pressure (27.6 or 27.5 MPa) and temperature (318 or 298 K) for CO2 + H2O with surfactant PFPE COO-NH4+ or DiF(8)-PO4-Na+. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Be it a physical object or a mathematical model, a nonlinear dynamical system can display complicated aperiodic behavior, or "chaos." In many cases, this chaos is associated with motion on a strange attractor in the system's phase space. And the dimension of the strange attractor indicates the effective number of degrees of freedom in the dynamical system.

In this thesis, we investigate numerical issues involved with estimating the dimension of a strange attractor from a finite time series of measurements on the dynamical system.

Of the various definitions of dimension, we argue that the correlation dimension is the most efficiently calculable and we remark further that it is the most commonly calculated. We are concerned with the practical problems that arise in attempting to compute the correlation dimension. We deal with geometrical effects (due to the inexact self-similarity of the attractor), dynamical effects (due to the nonindependence of points generated by the dynamical system that defines the attractor), and statistical effects (due to the finite number of points that sample the attractor). We propose a modification of the standard algorithm, which eliminates a specific effect due to autocorrelation, and a new implementation of the correlation algorithm, which is computationally efficient.

Finally, we apply the algorithm to chaotic data from the Caltech tokamak and the Texas tokamak (TEXT); we conclude that plasma turbulence is not a low- dimensional phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes simple extensions of the standard model with new sources of baryon number violation but no proton decay. The motivation for constructing such theories comes from the shortcomings of the standard model to explain the generation of baryon asymmetry in the universe, and from the absence of experimental evidence for proton decay. However, lack of any direct evidence for baryon number violation in general puts strong bounds on the naturalness of some of those models and favors theories with suppressed baryon number violation below the TeV scale. The initial part of the thesis concentrates on investigating models containing new scalars responsible for baryon number breaking. A model with new color sextet scalars is analyzed in more detail. Apart from generating cosmological baryon number, it gives nontrivial predictions for the neutron-antineutron oscillations, the electric dipole moment of the neutron, and neutral meson mixing. The second model discussed in the thesis contains a new scalar leptoquark. Although this model predicts mainly lepton flavor violation and a nonzero electric dipole moment of the electron, it includes, in its original form, baryon number violating nonrenormalizable dimension-five operators triggering proton decay. Imposing an appropriate discrete symmetry forbids such operators. Finally, a supersymmetric model with gauged baryon and lepton numbers is proposed. It provides a natural explanation for proton stability and predicts lepton number violating processes below the supersymmetry breaking scale, which can be tested at the Large Hadron Collider. The dark matter candidate in this model carries baryon number and can be searched for in direct detection experiments as well. The thesis is completed by constructing and briefly discussing a minimal extension of the standard model with gauged baryon, lepton, and flavor symmetries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis outlines the construction of several types of structured integrators for incompressible fluids. We first present a vorticity integrator, which is the Hamiltonian counterpart of the existing Lagrangian-based fluid integrator. We next present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness to coarse spatial and temporal resolutions of geometric integrators, and the simplicity of homogenized boundary conditions on regular grids to deal with arbitrarily-shaped domains with sub-grid accuracy.

Both these numerical methods involve approximating the Lie group of volume-preserving diffeomorphisms by a finite-dimensional Lie-group and then restricting the resulting variational principle by means of a non-holonomic constraint. Advantages and limitations of this discretization method will be outlined. It will be seen that these derivation techniques are unable to yield symplectic integrators, but that energy conservation is easily obtained, as is a discretized version of Kelvin's circulation theorem.

Finally, we outline the basis of a spectral discrete exterior calculus, which may be a useful element in producing structured numerical methods for fluids in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Otto Kelland was a truly unique individual in Newfoundland. During his long life he had several careers from being a prison superintendant to being an instructor at Marine Institute. During his life Kelland made hundreds of wooden boat models. They are beautifuly hand-crafted and represented the type of watercraft used by fishermen in Newfoundland. The collection of boat models made by Otto Kelland and owned by Marine Institute made an ideal object to be digitalized. In particular the collection of dories was an ideal group to be digitized. They were housed in one cabinet and accompanied by hand-written documents describing each model. The Digital Archives Initiative (DAI) is a “gateway to the learning and research-based cultural resources held by Memorial University of Newfoundland and partnering organizations.” The DAI hosts a variety of collections which together reinforce the importance, past and present, of Newfoundland and Labrador's history and culture. I will give an oral presentation of the project followed by a demonstration of the Otto Kelland Dories exhibit on the Digital Archives Initiative (DAI) at Memorial University of Newfoundland. I will be happy to answer questions following my presentation.