850 resultados para Histone Deacetylase Inhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our current understanding of the evolution of the histone gene family suffers from a lack of information on plant histone genes1. With a view to gathering some much needed information on these genes, we studied a rice genomic clone in pBR322 carrying H2A, H2B and H4 histone genes on a DNA fragment2 of 6.64 kilobases (kb). A restriction map of the insert was constructed and the organization of the three genes on this insert was determined. H2A and H2B histone genes were located at one end of the insert and H4 gene at the other with a 3.1 kb spacer in between. This cluster of three histone genes was found to be transcribed in a bidirectional fashion with H2A and H2B genes being encoded by one strand and the H4 gene by the other. These results indicate that plant histone gene organization differs from that of the sea urchin, but shows many similarities to the systems in other animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cupric and ferric complexes of isonicotinic acid hydrazide (INH) inhibit the DNA synthesis catalysed by avian myeloblastosis virus (AMV) reverse transcriptase. The inhibition was to the extent of 95% by 50 μM of cupric-INH complex and 55% by 100 μM of ferric-INH complex. These complexes have been found to bind preferentially to the enzyme than to the template-primer. Kinetic analysis showed that the cupric-INH complex is a non-competitive inhibitor with respect to dTTP. The time course of inhibition has revealed that the complexes are inhibitory even after the initiation of polynucleotide synthesis. In vivo toxicity studies in 1-day-old chicks have shown that the complexes are not toxic up to a concentration of 500 μg per chick. Infection of the 1-day-old chicks with AMV pretreated with 150 μg of either of the complexes prevented symptoms of leukemia due to virus inactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broad-spectrum antibiotics with heterocyclic side chains strongly inhibit peroxidase-catalyzed iodination in the presence of metallo--lactamase. This suggests that antibiotic resistance due to hydrolysis of the -lactam ring in antibiotics would have negative effects on thyroid activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of blocking ELISAs and haemagglutination-inhibition (HI) tests to detect antibodies in sera from chickens challenged with either Avibacterium (Haemophilus) paragallinarum isolate Hp8 (serovar A) or H668 (serovar C) was compared. Serum samples were examined weekly over the 9 weeks following infection. The results showed that the positive rate of serovar A specific antibody in the B-ELISA remained at 100% from the second week to the ninth week. In chickens given the serovar C challenge, the highest positive rate of serovar C specific antibody in the B-ELISA appeared at the seventh week (60% positive) and was then followed by a rapid decrease. The B-ELISA gave significantly more positives at weeks 2, 3, 7, 8 and 9 post-infection for serovar A and at week 7 post-infection for serovar C. In qualitative terms, for both serovar A and serovar C infections, the HI tests gave a lower percentage of positive sera at all time points except at 9 weeks post-infection with serovar C. The highest positive rate for serovar A HI antibodies was 70% of sera at the fourth and fifth weeks post-infection. The highest rate of serovar C HI antibodies was 20% at the fifth and sixth weeks post-infection. The results have provided further evidence of the suitability of the serovar A and C B-ELISAs for the diagnosis of infectious coryza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antitumour antibiotic, adriamycin, inhibited oxidative phosphorylation in freshly prepared mitochondria from the heart, liver and kidney of the rat. It abolished respiratory control and stimulated ATPase activity. Sccinate oxidation by heart mitochondria was extremely sensitive to the drug when hexokinase was present in the reaction medium. The sensitive site has been identified to lie in the region between the succinate dehydrogenase flavoprotein and ubiquinone of the respiratory chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory action of the anticancer antibiotic, Adriamycin, on succinate-dependent oxidative phosphorylation in heart mitochondria was markedly potentiated by the presence of hexokinase in the reaction medium. This 'hexokinase effect' was not observed in the oxidation of NAD+-linked substrates, or when liver or kidney mitochondria were used in place of heart mitochondria. These results offer a biochemical explanation for the extreme cardiac toxicity of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMPA receptors are an important class of ionotropic glutamate receptors which participate in fast excitatory synaptic transmission in most brain areas. They have a pivotal role in adjustment of cell membrane excitability as their cell membrane expression levels is altered in brain physiology such as in learning and memory formation. AMPA receptor function and trafficking is regulated by several proteins, such as transmembrane AMPA receptor regulatory proteins (TARPs). NMDA-type glutamate receptors are important target molecules of ethanol. The role of AMPA receptors in the actions of ethanol has not been clarified as thoroughly. Furthermore, the regulation of AMPA receptor synthesis and their possible adaptation in neurons with altered inhibitory mechanisms are poorly understood. In this thesis work AMPA receptor pharmacology, trafficking and synaptic localization was studied using patch-clamp electrophysiology. Both native and recombinant AMPA receptors were studied. Hippocampal slices from transgenic Thy1alfa6 mice with altered inhibition were used to study adaptation of AMPA receptors. Ethanol was found to inhibit AMPA receptor function by increasing desensitization of the receptor, as the steady-state current was inhibited more than the peak current. Ethanol inhibition was reduced when cyclothiazide was used to block desensitization and when non-desensitizing mutant receptors were studied. Ethanol also increased the rate of desensitization, which was increased further by the coexpression of TARP-proteins. We found that the agonist binding capability is important for trafficking AMPA receptors from endoplasmic reticulum to the cell membrane. TARP rescues the surface expression of non-binding AMPA receptor mutants in HEK293 cells, but not in native neurons. Studies with Thy1alfa6 mice revealed that decreased inhibition decrease AMPA receptor mediated excitation keeping the neurotransmission in balance. Thy1alfa6 mice also had lower sensitivity to electroshock convulsions, presumably due to the decreased AMPA receptor function. The results suggest that during alcohol intoxication ethanol may inhibit AMPA receptors by increasing the rate and the extent of desensitization. TARPs appear to enhance ethanol inhibition. TARPs also participate in trafficking of AMPA receptors upon their synthesis in the cell. AMPA receptors mediate also long-term adaptation to altered neuronal excitability, which adds to their well-known role in synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of H2O2 by rat liver mitochondria with choline, glycerol 1-phosphate and proline as substrates has been shown by using high-concentration phosphate buffer. Rates obtained under these conditions were higher and more consistent as compared with the earlier reports with high-concentration mannitol/sucrose/Tris buffer. Sulphate ions could replace phosphate indicating a requirement for a high concentration of oxygen-containing anions. H2O2 generation was dependent on the presence of native mitochondria and substrate. Maximal rates with various substrates were found to be the same as with succinate. Values of Km and Vmax for H2O2 generation were considerably less than those obtained for respective dehydrogenase activities, measured by dye reduction. Scavengers of O2-. and OH. inhibited generation of H2O2. ATP, ADP, thyronine derivatives and a number of phenolic compounds also showed very potent inhibitory effects of H2O2 generation, whereas phenyl compound had no effect. Phenolic compounds did not have any effect on mitochondrial superoxide dismutase and choline dehydrogenase activities as well as on O2-. generation by the xanthine-xanthine oxidase system. Inhibition by phenolic compounds may have potential for regulation of the intracellular concentration of H2O2, that is not considered to have a "second messenger' function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preferred conformations of β-phenylpropionyl-Image -phenylalanine (β-PPP) and N-carbobenzoxy-L-phenylalanine (Cbz-Phe), two inhibitors of thermolysin, have been determined by computing potential energy using empirial potential energy functions. Of the 15 to 20 conformations that are favoured for each of these inhibitors only a few have the right conformation to reach the active site of the enzyme. The conformer of β-PPP that initiates binding with the enzyme is different from the bound one, while for Cbz-Phe the bound and initiating conformers are quite similar. Thus, β-PPP favours the ‘induced fit’ model while Cbz-Phe follows the ‘lock and key’ model of binding. The inhibitors differ in their alignment at the active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of micellar compartmentalization has been used to inhibit the diffusion-controlled self-quenching process in thioketones. By adjusting the ratio of the bulk concentration of the thioketone solute to the bulk concentration of micelles multiple occupancy of the micelles was avoided. Under these conditions enhanced phosphorescence intensity was observed in nitrogen-purged micellar solutions compared with that in acetonitrile solutions, indicating that the thioketone triple was indeed protected from deactivation by a ground statet

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The azodye 2-methyl-4-dimethylaminoazobenzene inhibited oxidation and phosphorylation in tightly coupled rat liver mitochondria. Phosphorylation was more sensitive to the inhibitory action of the azodye than was the oxidation of succinate or ascorbate. The oxidation of NAD+-linked substrate was severely inhibited by the compound. In submitochondrial particles, only NADH oxidation was sensitive. The site of inhibition has been identified to lie between the dehydrogenase flavoprotein and ubiquinone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cibacron Blue 3G-A inhibited monkey liver serine hydroxymethyltransferase competitively with respect to tetrahydrofolate and non-competitively with respect to L-serine. NADH, a positive heterotropic effector, failed to protect the enzymes against inhibition by the dye and was unable to desorb the enzyme from Blue Sepharose CL-6B gel matrix. The binding of the dye to the free enzyme was confirmed by changes in the dye absorption spectrum. The results indicate that the dye probably binds at the tetrahydrofolate-binding domain of the enzyme, rather than at the 'dinucleotide fold'.