922 resultados para High-level Design Specification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/ gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oggi, i dispositivi portatili sono diventati la forza trainante del mercato consumer e nuove sfide stanno emergendo per aumentarne le prestazioni, pur mantenendo un ragionevole tempo di vita della batteria. Il dominio digitale è la miglior soluzione per realizzare funzioni di elaborazione del segnale, grazie alla scalabilità della tecnologia CMOS, che spinge verso l'integrazione a livello sub-micrometrico. Infatti, la riduzione della tensione di alimentazione introduce limitazioni severe per raggiungere un range dinamico accettabile nel dominio analogico. Minori costi, minore consumo di potenza, maggiore resa e una maggiore riconfigurabilità sono i principali vantaggi dell'elaborazione dei segnali nel dominio digitale. Da più di un decennio, diverse funzioni puramente analogiche sono state spostate nel dominio digitale. Ciò significa che i convertitori analogico-digitali (ADC) stanno diventando i componenti chiave in molti sistemi elettronici. Essi sono, infatti, il ponte tra il mondo digitale e analogico e, di conseguenza, la loro efficienza e la precisione spesso determinano le prestazioni globali del sistema. I convertitori Sigma-Delta sono il blocco chiave come interfaccia in circuiti a segnale-misto ad elevata risoluzione e basso consumo di potenza. I tools di modellazione e simulazione sono strumenti efficaci ed essenziali nel flusso di progettazione. Sebbene le simulazioni a livello transistor danno risultati più precisi ed accurati, questo metodo è estremamente lungo a causa della natura a sovracampionamento di questo tipo di convertitore. Per questo motivo i modelli comportamentali di alto livello del modulatore sono essenziali per il progettista per realizzare simulazioni veloci che consentono di identificare le specifiche necessarie al convertitore per ottenere le prestazioni richieste. Obiettivo di questa tesi è la modellazione del comportamento del modulatore Sigma-Delta, tenendo conto di diverse non idealità come le dinamiche dell'integratore e il suo rumore termico. Risultati di simulazioni a livello transistor e dati sperimentali dimostrano che il modello proposto è preciso ed accurato rispetto alle simulazioni comportamentali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis described the research carried out on the development of a novel hardwired tactile sensing system tailored for the application of a next generation of surgical robotic and clinical devices, namely a steerable endoscope with tactile feedback, and a surface plate for patient posture and balance. Two case studies are examined. The first is a one-dimensional sensor for the steerable endoscope retrieving shape and ‘touch’ information. The second is a two-dimensional surface which interprets the three-dimensional motion of a contacting moving load. This research can be used to retrieve information from a distributive tactile sensing surface of a different configuration, and can interpret dynamic and static disturbances. This novel approach to sensing has the potential to discriminate contact and palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients. The hardwired technology uses an embedded system based on Field Programmable Gate Arrays (FPGA) as the platform to perform the sensory signal processing part in real time. High speed robust operation is an advantage from this system leading to versatile application involving dynamic real time interpretation as described in this research. In this research the sensory signal processing uses neural networks to derive information from input pattern from the contacting surface. Three neural network architectures namely single, multiple and cascaded were introduced in an attempt to find the optimum solution for discrimination of the contacting outputs. These architectures were modelled and implemented into the FPGA. With the recent introduction of modern digital design flows and synthesis tools that essentially take a high-level sensory processing behaviour specification for a design, fast prototyping of the neural network function can be achieved easily. This thesis outlines the challenge of the implementations and verifications of the performances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human Resource (HR) systems and practices generally referred to as High Performance Work Practices (HPWPs), (Huselid, 1995) (sometimes termed High Commitment Work Practices or High Involvement Work Practices) have attracted much research attention in past decades. Although many conceptualizations of the construct have been proposed, there is general agreement that HPWPs encompass a bundle or set of HR practices including sophisticated staffing, intensive training and development, incentive-based compensation, performance management, initiatives aimed at increasing employee participation and involvement, job safety and security, and work design (e.g. Pfeffer, 1998). It is argued that these practices either directly and indirectly influence the extent to which employees’ knowledge, skills, abilities, and other characteristics are utilized in the organization. Research spanning nearly 20 years has provided considerable empirical evidence for relationships between HPWPs and various measures of performance including increased productivity, improved customer service, and reduced turnover (e.g. Guthrie, 2001; Belt & Giles, 2009). With the exception of a few papers (e.g., Laursen &Foss, 2003), this literature appears to lack focus on how HPWPs influence or foster more innovative-related attitudes and behaviours, extra role behaviors, and performance. This situation exists despite the vast evidence demonstrating the importance of innovation, proactivity, and creativity in its various forms to individual, group, and organizational performance outcomes. Several pertinent issues arise when considering HPWPs and their relationship to innovation and performance outcomes. At a broad level is the issue of which HPWPs are related to which innovation-related variables. Another issue not well identified in research relates to employees’ perceptions of HPWPs: does an employee actually perceive the HPWP –outcomes relationship? No matter how well HPWPs are designed, if they are not perceived and experienced by employees to be effective or worthwhile then their likely success in achieving positive outcomes is limited. At another level, research needs to consider the mechanisms through which HPWPs influence –innovation and performance. The research question here relates to what possible mediating variables are important to the success or failure of HPWPs in impacting innovative behaviours and attitudes and what are the potential process considerations? These questions call for theory refinement and the development of more comprehensive models of the HPWP-innovation/performance relationship that include intermediate linkages and boundary conditions (Ferris, Hochwarter, Buckley, Harrell-Cook, & Frink, 1999). While there are many calls for this type of research to be made a high priority, to date, researchers have made few inroads into answering these questions. This symposium brings together researchers from Australia, Europe, Asia and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a HPWP and potential variables that can facilitate or hinder the effects of these practices on innovation- and performance- related outcomes. The first paper by Johnston and Becker explores the HPWPs in relation to work design in a disaster response organization that shifts quickly from business as usual to rapid response. The researchers examine how the enactment of the organizational response is devolved to groups and individuals. Moreover, they assess motivational characteristics that exist in dual work designs (normal operations and periods of disaster activation) and the implications for innovation. The second paper by Jørgensen reports the results of an investigation into training and development practices and innovative work behaviors (IWBs) in Danish organizations. Research on how to design and implement training and development initiatives to support IWBs and innovation in general is surprisingly scant and often vague. This research investigates the mechanisms by which training and development initiatives influence employee behaviors associated with innovation, and provides insights into how training and development can be used effectively by firms to attract and retain valuable human capital in knowledge-intensive firms. The next two papers in this symposium consider the role of employee perceptions of HPWPs and their relationships to innovation-related variables and performance. First, Bish and Newton examine perceptions of the characteristics and awareness of occupational health and safety (OHS) practices and their relationship to individual level adaptability and proactivity in an Australian public service organization. The authors explore the role of perceived supportive and visionary leadership and its impact on the OHS policy-adaptability/proactivity relationship. The study highlights the positive main effects of awareness and characteristics of OHS polices, and supportive and visionary leadership on individual adaptability and proactivity. It also highlights the important moderating effects of leadership in the OHS policy-adaptability/proactivity relationship. Okhawere and Davis present a conceptual model developed for a Nigerian study in the safety-critical oil and gas industry that takes a multi-level approach to the HPWP-safety relationship. Adopting a social exchange perspective, they propose that at the organizational level, organizational climate for safety mediates the relationship between enacted HPWS’s and organizational safety performance (prescribed and extra role performance). At the individual level, the experience of HPWP impacts on individual behaviors and attitudes in organizations, here operationalized as safety knowledge, skills and motivation, and these influence individual safety performance. However these latter relationships are moderated by organizational climate for safety. A positive organizational climate for safety strengthens the relationship between individual safety behaviors and attitudes and individual-level safety performance, therefore suggesting a cross-level boundary condition. The model includes both safety performance (behaviors) and organizational level safety outcomes, operationalized as accidents, injuries, and fatalities. The final paper of this symposium by Zhang and Liu explores leader development and relationship between transformational leadership and employee creativity and innovation in China. The authors further develop a model that incorporates the effects of extrinsic motivation (pay for performance: PFP) and employee collectivism in the leader-employee creativity relationship. The papers’ contributions include the incorporation of a PFP effect on creativity as moderator, rather than predictor in most studies; the exploration of the PFP effect from both fairness and strength perspectives; the advancement of knowledge on the impact of collectivism on the leader- employee creativity link. Last, this is the first study to examine three-way interactional effects among leader-member exchange (LMX), PFP and collectivism, thus, enriches our understanding of promoting employee creativity. In conclusion, this symposium draws upon the findings of four empirical studies and one conceptual study to provide an insight into understanding how different variables facilitate or potentially hinder the influence various HPWPs on innovation and performance. We will propose a number of questions for further consideration and discussion. The symposium will address the Conference Theme of ‘Capitalism in Question' by highlighting how HPWPs can promote financial health and performance of organizations while maintaining a high level of regard and respect for employees and organizational stakeholders. Furthermore, the focus on different countries and cultures explores the overall research question in relation to different modes or stages of development of capitalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PurposeTo develop and validate a classification system for focal vitreomacular traction (VMT) with and without macular hole based on spectral domain optical coherence tomography (SD-OCT), intended to aid in decision-making and prognostication.MethodsA panel of retinal specialists convened to develop this system. A literature review followed by discussion on a wide range of cases formed the basis for the proposed classification. Key features on OCT were identified and analysed for their utility in clinical practice. A final classification was devised based on two sequential, independent validation exercises to improve interobserver variability.ResultsThis classification tool pertains to idiopathic focal VMT assessed by a horizontal line scan using SD-OCT. The system uses width (W), interface features (I), foveal shape (S), retinal pigment epithelial changes (P), elevation of vitreous attachment (E), and inner and outer retinal changes (R) to give the acronym WISPERR. Each category is scored hierarchically. Results from the second independent validation exercise indicated a high level of agreement between graders: intraclass correlation ranged from 0.84 to 0.99 for continuous variables and Fleiss' kappa values ranged from 0.76 to 0.95 for categorical variables.ConclusionsWe present an OCT-based classification system for focal VMT that allows anatomical detail to be scrutinised and scored qualitatively and quantitatively using a simple, pragmatic algorithm, which may be of value in clinical practice as well as in future research studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software architecture plays an essential role in the high level description of a system design, where the structure and communication are emphasized. Despite its importance in the software engineering process, the lack of formal description and automated verification hinders the development of good software architecture models. In this paper, we present an approach to support the rigorous design and verification of software architecture models using the semantic web technology. We view software architecture models as ontology representations, where their structures and communication constraints are captured by the Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL). Specific configurations on the design are represented as concrete instances of the ontology, to which their structures and dynamic behaviors must conform. Furthermore, ontology reasoning tools can be applied to perform various automated verification on the design to ensure correctness, such as consistency checking, style recognition, and behavioral inference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antenna design is an iterative process in which structures are analyzed and changed to comply with certain performance parameters required. The classic approach starts with analyzing a "known" structure, obtaining the value of its performance parameter and changing this structure until the "target" value is achieved. This process relies on having an initial structure, which follows some known or "intuitive" patterns already familiar to the designer. The purpose of this research was to develop a method of designing UWB antennas. What is new in this proposal is that the design process is reversed: the designer will start with the target performance parameter and obtain a structure as the result of the design process. This method provided a new way to replicate and optimize existing performance parameters. The base of the method was the use of a Genetic Algorithm (GA) adapted to the format of the chromosome that will be evaluated by the Electromagnetic (EM) solver. For the electromagnetic study we used XFDTD™ program, based in the Finite-Difference Time-Domain technique. The programming portion of the method was created under the MatLab environment, which serves as the interface for converting chromosomes, file formats and transferring of data between the XFDTD™ and GA. A high level of customization had to be written into the code to work with the specific files generated by the XFDTD™ program. Two types of cost functions were evaluated; the first one seeking broadband performance within the UWB band, and the second one searching for curve replication of a reference geometry. The performance of the method was evaluated considering the speed provided by the computer resources used. Balance between accuracy, data file size and speed of execution was achieved by defining parameters in the GA code as well as changing the internal parameters of the XFDTD™ projects. The results showed that the GA produced geometries that were analyzed by the XFDTD™ program and changed following the search criteria until reaching the target value of the cost function. Results also showed how the parameters can change the search criteria and influence the running of the code to provide a variety of geometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents details of the design and development of novel tools and instruments for scanning tunneling microscopy (STM), and may be considered as a repository for several years' worth of development work. The author presents design goals and implementations for two microscopes. First, a novel Pan-type STM was built that could be operated in an ambient environment as a liquid-phase STM. Unique features of this microscope include a unibody frame, for increased microscope rigidity, a novel slider component with large Z-range, a unique wiring scheme and damping mechanism, and a removable liquid cell. The microscope exhibits a high level of mechanical isolation at the tunnel junction, and operates excellently as an ambient tool. Experiments in liquid are on-going. Simultaneously, the author worked on designs for a novel low temperature, ultra-high vacuum (LT-UHV) instrument, and these are presented as well. A novel stick-slip vertical coarse approach motor was designed and built. To gauge the performance of the motor, an in situ motion sensing apparatus was implemented, which could measure the step size of the motor to high precision. A new driving circuit for stick-slip inertial motors is also presented, that o ffers improved performance over our previous driving circuit, at a fraction of the cost. The circuit was shown to increase step size performance by 25%. Finally, a horizontal sample stage was implemented in this microscope. The build of this UHV instrument is currently being fi nalized. In conjunction with the above design projects, the author was involved in a collaborative project characterizing N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on Au(111) films. STM was used to characterize Au substrate quality, for both commercial substrates and those manufactured via a unique atomic layer deposition (ALD) process by collaborators. Ambient and UHV STM was then also used to characterize the NHC/Au(111) films themselves, and several key properties of these films are discussed. During this study, the author discovered an unexpected surface contaminant, and details of this are also presented. Finally, two models are presented for the nature of the NHC-Au(111) surface interaction based on the observed film properties, and some preliminary theoretical work by collaborators is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of political parties for contemporary representative democracies is beyond dispute. Despite their significance for state-level democracy, political parties continue to be regarded as oligarchical and to be criticised because of their internal practices. For this reason, intra-party democracy (IPD) warrants in-depth analysis. This thesis investigates IPD in Turkey, primarily from the perspective of participatory democracy, with the purpose of suggesting reforms to the Turkish Political Parties Law (TPPL). Turkish political parties and Turkish party regulation provide an interesting case because there is a significant difference between mature democracies and Turkey regarding IPD regulation. IPD in established democracies has always been regarded as a private concern of parties and has been left unregulated. IPD in Turkey, by contrast, is provided for both by the constitution and the TPPL. Although IPD is a constitutional and legal requirement in Turkey, however, political parties in fact display a high level of non-democratic administration. The main reason is that the TPPL only pays lip service to the idea of IPD and requires no specific measures apart from establishing a party congress with a representative form of democracy. By establishing and holding party congresses, political parties are perceived as conforming to the requirements of IPD under the law. In addition, the contested nature of democracy as a concept has impeded the creation of efficacious legal principles. Thus, the existing party law fails to tackle the lack of IPD within political parties and, for this reason, is in need of reform. Furthermore, almost every Turkish party’s own constitution highlights the importance of IPD and promises IPD. However, these declared commitments to IPD in their constitutions alone, especially in countries where the democratic culture is weak, are unlikely to make much difference in practice. Accordingly, external regulation is necessary to ensure the protection of the rights and interests of the party members with regards to their participation in intra-party decision-making processes. Nevertheless, in spite of a general consensus in favour of reforming the TPPL, a lack of consensus exists as to what kind of reforms should be adopted. This thesis proposes that reforming the TPPL in line with an approach based on participatory democracy could provide better IPD within Turkish political parties, citing as evidence comparative case studies of the participatory practices for policy-making, leadership selection and candidate selection in mature democracies. This thesis also analyses membership registration and the effect of state funding on IPD, which are highly problematic in Turkey and represent impediments to the flourishing of IPD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software Architecture is a high level description of a software intensive system that enables architects to have a better intellectual control over the complete system. It is also used as a communication vehicle among the various system stakeholders. Variability in software-intensive systems is the ability of a software artefact (e.g., a system, subsystem, or component) to be extended, customised, or configured for deployment in a specific context. Although variability in software architecture is recognised as a challenge in multiple domains, there has been no formal consensus on how variability should be captured or represented. In this research, we addressed the problem of representing variability in software architecture through a three phase approach. First, we examined existing literature using the Systematic Literature Review (SLR) methodology, which helped us identify the gaps and challenges within the current body of knowledge. Equipped with the findings from the SLR, a set of design principles have been formulated that are used to introduce variability management capabilities to an existing Architecture Description Language (ADL). The chosen ADL was developed within our research group (ALI) and to which we have had complete access. Finally, we evaluated the new version of the ADL produced using two distinct case studies: one from the Information Systems domain, an Asset Management System (AMS); and another from the embedded systems domain, a Wheel Brake System (WBS). This thesis presents the main findings from the three phases of the research work, including a comprehensive study of the state-of-the-art; the complete specification of an ADL that is focused on managing variability; and the lessons learnt from the evaluation work of two distinct real-life case studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secure Multi-party Computation (MPC) enables a set of parties to collaboratively compute, using cryptographic protocols, a function over their private data in a way that the participants do not see each other's data, they only see the final output. Typical MPC examples include statistical computations over joint private data, private set intersection, and auctions. While these applications are examples of monolithic MPC, richer MPC applications move between "normal" (i.e., per-party local) and "secure" (i.e., joint, multi-party secure) modes repeatedly, resulting overall in mixed-mode computations. For example, we might use MPC to implement the role of the dealer in a game of mental poker -- the game will be divided into rounds of local decision-making (e.g. bidding) and joint interaction (e.g. dealing). Mixed-mode computations are also used to improve performance over monolithic secure computations. Starting with the Fairplay project, several MPC frameworks have been proposed in the last decade to help programmers write MPC applications in a high-level language, while the toolchain manages the low-level details. However, these frameworks are either not expressive enough to allow writing mixed-mode applications or lack formal specification, and reasoning capabilities, thereby diminishing the parties' trust in such tools, and the programs written using them. Furthermore, none of the frameworks provides a verified toolchain to run the MPC programs, leaving the potential of security holes that can compromise the privacy of parties' data. This dissertation presents language-based techniques to make MPC more practical and trustworthy. First, it presents the design and implementation of a new MPC Domain Specific Language, called Wysteria, for writing rich mixed-mode MPC applications. Wysteria provides several benefits over previous languages, including a conceptual single thread of control, generic support for more than two parties, high-level abstractions for secret shares, and a fully formalized type system and operational semantics. Using Wysteria, we have implemented several MPC applications, including, for the first time, a card dealing application. The dissertation next presents Wys*, an embedding of Wysteria in F*, a full-featured verification oriented programming language. Wys* improves on Wysteria along three lines: (a) It enables programmers to formally verify the correctness and security properties of their programs. As far as we know, Wys* is the first language to provide verification capabilities for MPC programs. (b) It provides a partially verified toolchain to run MPC programs, and finally (c) It enables the MPC programs to use, with no extra effort, standard language constructs from the host language F*, thereby making it more usable and scalable. Finally, the dissertation develops static analyses that help optimize monolithic MPC programs into mixed-mode MPC programs, while providing similar privacy guarantees as the monolithic versions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.