911 resultados para High-fructose diets: Lipid metabolism: Lactate kinetics
Resumo:
AIMS/HYPOTHESIS: High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling. METHODS: Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr ( -/- )) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20-26 weeks of intervention, n = 8-10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake. RESULTS: Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr ( -/- ) vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity. CONCLUSIONS/INTERPRETATION: The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial.
Resumo:
The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.
Resumo:
High-fat diets induce weight gain and fatty liver in wild-type mice. Schistosomiasis mansoni infection also promotes hepatic injury. This study was designed to quantify hepatic alterations in schistosomiasis mansoni-infected mice fed a high fat-rich chow compared to mice fed a standard rodent chow, using stereology. Female SW mice fed each either high-fat diet (29% lipids) or standard chow (12% lipids) over 8 months, and then were infected with Schistosoma mansoni cercariae. Four experimental groups were studied: infected mice fed a high-fat diet (IHFC) or standard chow (ISC), uninfected mice fed a high-fat diet (HFC) or standard chow (SC). Mice were sacrificed during early infection (9 weeks from exposure). The following hepatic biometry and the stereology parameters were determined: volume density (hepatocytes [h], sinusoids [s], steatosis [st] and hepatic fibrosis [hf]); numerical density (hepatocyte nuclei - Nv[h]); absolute number of total hepatocyte N[h], normal hepatocyte N[nh], and binucleated hepatocyte N[bh], percentage of normal hepatocyte P[nh] and binucleated hepatocyte P[bh]. IHFC and HFC groups exhibited TC, HDL-C, LDL-C, and body mass significantly greater (p < 0.05) than control group. No significant differences were found regards liver volume (p = 0.07). Significant differences were observed regards P[nh] (p = 0.0045), P[bh] (p = 0.0045), Nv[h] (p = 0.0006), N[h] (p = 0.0125), N[bh] (p = 0.0164) and N[nh] (p = 0.0078). IHFC mice group presented 29% of binucleated hepatocytes compared to HFC group (19%), ISC group (17%) and SC (6%). Volume density was significantly different between groups: Vv[h] (p = 0.0052), Vv[s] (p = 0.0025), Vv[st] (p = 0.0004), and Vv[hf] (p = 0.0007). In conclusion, schistosomiasis mansoni infection with concurrent high-fat diet promotes intensive quantitative changes in hepatic structure, contributing to an increasing on hepatic regeneration.
Resumo:
Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer-related protease urokinase-type plasminogen activator (uPA), we observed a glycine residue that has a positive ϕ dihedral angle when bound to the target. We hypothesized that replacing it with a D-amino acid, which favors positive ϕ angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D-serine in the bicyclic peptide indeed improved inhibitory activity (1.75-fold) and stability (fourfold). X-ray-structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ϕ angles are found in many protein-bound peptides. These results suggest that the glycine-to-D-amino acid mutagenesis strategy could be broadly applied.
Resumo:
Introduction: Diuretics play a pivotal role in the management of hypertension. A large experience has been accumulated with indapamide , a long-acting thiazide-like diuretic that lowers blood pressure (BP) primarily through its natriuretic diuretic effect. Some of its long-term antihypertensive efficacy may be due to calcium antagonist-like vasorelaxant activities. Indapamide has protecting effects in a variety of conditions associated with high cardiovascular risk, such as diabetes, left ventricular hypertrophy, nephropathy and stroke. It is highly effective in lowering BP, whether given alone or in combination. Indapamide is well tolerated and has the advantage of having no adverse impact on glucose and lipid metabolism. Today, thiazide-like diuretics are regarded more and more as preferred drugs, when diuretic therapy is required to lower BP. Areas covered: The aim of this paper is to review the experience accumulated with indapamide. It is limited to clinical studies that are relevant for the everyday management of hypertensive patients, whether or not they exhibit cardiovascular or renal disease. Expert opinion: Indapamide, because of its well-documented beneficial effects on cardiovascular and renal outcomes, represents a safe and valuable option for treating patients with high BP. There is, however, still room for new trials evaluating the combination of this diuretic with other types of antihypertensive drugs, in particular a calcium antagonist such as amlodipine. There is also the need to compare the indapamide-perindopril and indapamide-amlodipine combinations, in terms of antihypertensive efficacy, tolerability and effects on target organ damage and, ideally, on cardiovascular mortality.
Resumo:
The current drug options for the treatment of chronic Chagas disease have not been sufficient and high hopes have been placed on the use of genomic data from the human parasite Trypanosoma cruzi to identify new drug targets and develop appropriate treatments for both acute and chronic Chagas disease. However, the lack of a complete assembly of the genomic sequence and the presence of many predicted proteins with unknown or unsure functions has hampered our complete view of the parasite's metabolic pathways. Moreover, pinpointing new drug targets has proven to be more complex than anticipated and has revealed large holes in our understanding of metabolic pathways and their integrated regulation, not only for this parasite, but for many other similar pathogens. Using an in silicocomparative study on pathway annotation and searching for analogous and specific enzymes, we have been able to predict a considerable number of additional enzymatic functions in T. cruzi. Here we focus on the energetic pathways, such as glycolysis, the pentose phosphate shunt, the Krebs cycle and lipid metabolism. We point out many enzymes that are analogous to those of the human host, which could be potential new therapeutic targets.
Resumo:
Reduced reproduction is associated with increased fat storage and prolonged life span in multiple organisms, but the underlying regulatory mechanisms remain poorly understood. Recent studies in several species provide evidence that reproduction, fat metabolism, and longevity are directly coupled. For instance, germline removal in the nematode Caenorhabditis elegans promotes longevity in part by modulating lipid metabolism through effects on fatty acid desaturation, lipolysis, and autophagy. Here, we review these recent studies and discuss the mechanisms by which reproduction modulates fat metabolism and life span. Elucidating the relationship between these processes could contribute to our understanding of age-related diseases including metabolic disorders.
Resumo:
OBJECTIVE: To determine the influence of body weight, fat mass, and fat distribution on resting endogenous glucose production in healthy lean and overweight individuals. DESIGN: measurements were performed in the resting postabsorptive state in individuals receiving an unrestricted diet. SETTING: Institute of Physiology of Lausanne University. MEASUREMENTS: resting post absorptive glucose production, glycogenolysis and gluconeogenesis; resting energy expenditure and net substrate oxidation. RESULTS: Endogenous glucose production was positively correlated with body weight, lean body mass, energy expenditure and carbohydrate oxidation. Gluconeogenesis was positively correlated with net lipid oxidation and energy expenditure, and negatively correlated with net carbohydrate oxidation. No correlation with body fat or fat distribution was observed. CONCLUSIONS: Gluconeogenesis shows a large interindividual variability. Net lipid oxidation and not body fat appears to be a major determinant of gluconeogenesis.
Resumo:
Oenocytes are ectodermic cells present in the fat body of several insect species and these cells are considered to be analogous to the mammalian liver, based on their role in lipid storage, metabolism and secretion. Although oenocytes were identified over a century ago, little is known about their messenger RNA expression profiles. In this study, we investigated the transcriptome of Aedes aegypti oenocytes. We constructed a cDNA library from Ae. aegypti MOYO-R strain oenocytes collected from pupae and randomly sequenced 687 clones. After sequences editing and assembly, 326 high-quality contigs were generated. The most abundant transcripts identified corresponded to the cytochrome P450 superfamily, whose members have roles primarily related to detoxification and lipid metabolism. In addition, we identified 18 other transcripts with putative functions associated with lipid metabolism. One such transcript, a fatty acid synthase, is highly represented in the cDNA library of oenocytes. Moreover, oenocytes expressed several immunity-related genes and the majority of these genes were lysozymes. The transcriptional profile suggests that oenocytes play diverse roles, such as detoxification and lipid metabolism, and increase our understanding of the importance of oenocytes in Ae. aegypti homeostasis and immune competence.
Resumo:
The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.
Resumo:
OBJECTIVE Zinc-α(2) glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR). METHODS mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed. RESULTS The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL. CONCLUSIONS ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.
Resumo:
Imaging mass spectrometry (IMS) represents an innovative tool in the cancer research pipeline, which is increasingly being used in clinical and pharmaceutical applications. The unique properties of the technique, especially the amount of data generated, make the handling of data from multiple IMS acquisitions challenging. This work presents a histology-driven IMS approach aiming to identify discriminant lipid signatures from the simultaneous mining of IMS data sets from multiple samples. The feasibility of the developed workflow is evaluated on a set of three human colorectal cancer liver metastasis (CRCLM) tissue sections. Lipid IMS on tissue sections was performed using MALDI-TOF/TOF MS in both negative and positive ionization modes after 1,5-diaminonaphthalene matrix deposition by sublimation. The combination of both positive and negative acquisition results was performed during data mining to simplify the process and interrogate a larger lipidome into a single analysis. To reduce the complexity of the IMS data sets, a sub data set was generated by randomly selecting a fixed number of spectra from a histologically defined region of interest, resulting in a 10-fold data reduction. Principal component analysis confirmed that the molecular selectivity of the regions of interest is maintained after data reduction. Partial least-squares and heat map analyses demonstrated a selective signature of the CRCLM, revealing lipids that are significantly up- and down-regulated in the tumor region. This comprehensive approach is thus of interest for defining disease signatures directly from IMS data sets by the use of combinatory data mining, opening novel routes of investigation for addressing the demands of the clinical setting.
Resumo:
La tècnica de la microdiàlisis cerebral (MDC) és un instrument que proporciona informació rellevant en la monitorització del metabolisme cerebral en els pacients neurocrítics. El lactat i l’índex lactat-piruvat (ILP) són dos marcadors utilitzats per a la detecció de la hipòxia cerebral en pacients que han patit un traumatisme cranioencefàlic (TCE). Aquests dos marcadors poden estar anormalment elevats en circumstàncies que no cursen amb hipòxia tissular. Per una altra banda la recent aparició dels catèters de MDC amb porus de major mida denominats d’”alta resolució”, permet ampliar el rang de molècules que es poden detectar en el dialitzat. Objectius: 1) descriure les característiques del metabolisme energètic cerebral que s’observa en la fase aguda dels pacients que han patit un TCE en base als dos indicadors del metabolisme anaeròbic: lactat i ILP, i 2) determinar la recuperació relativa (RR) de les molècules implicades en la resposta neuroinflamatòria: de IL-1β, IL- 6, IL-8 i IL-10. Material i mètodes: Es van seleccionar 46 pacients d’una cohort de pacients amb TCE moderat o greu ingressats a la Unitat de Cures Intensives de l’Hospital Universitari de la Vall d’Hebron i monitoritzats amb MDC. Es van analitzar els nivells de lactat i ILP i es va correlacionar amb els nivells de PtiO2. Es van realitzar experiments in vitro per estudiar la recuperació de les membranes de 100 KDa per tal de poder interpretar posteriorment els nivells reals de les molècules estudiades en l’espai extracel•lular del teixit cerebral. Resultats: La concordança entre el lactat i l’índex LP per a determinar episodis de disfunció metabòlica va ser dèbil (índex de kappa = 0,36, IC 95%: 0,34-0,39). Més del 80% dels casos en què el lactat i l’índex LP es trobaven incrementats, els valors de la PtiO2 es van trobar dins els rangs de normalitat (PtiO2&15mmHg). La recuperació de les citoquines a través de la membrana de microdiàlisis va ser menor de l’esperat tenint en compte la mida dels porus de la membrana. Conclusions: el lactat i l’índex LP elevats va ser una troballa freqüent després d’un TCE i no es va relacionar, en la majoria de casos, amb episodis d’hipòxia tissular. Per un altra part la mida del porus de la membrana no és l’únic paràmetre indicador de la RR de macromolècules.
Resumo:
Peripheral arterial disease, manifested as intermittent claudication or critical ischaemia, or identified by an ankle/brachial index < 0.9, is present in at least one in every four patients with type 2 diabetes mellitus. Several reasons exist for peripheral arterial disease in diabetes. In addition to hyperglycaemia, smoking and hypertension, the dyslipidaemia that accompanies type 2 diabetes and is characterised by increased triglyceride levels and reduced high-density lipoprotein cholesterol concentrations also seems to contribute to this association. Recent years have witnessed an increased interest in postprandial lipidaemia, as a result of various prospective studies showing that non-fasting triglycerides predict the onset of arteriosclerotic cardiovascular disease better than fasting measurements do. Additionally, the use of certain specific postprandial particle markers, such as apolipoprotein B-48, makes it easier and more simple to approach the postprandial phenomenon. Despite this, only a few studies have evaluated the role of postprandial triglycerides in the development of peripheral arterial disease and type 2 diabetes. The purpose of this review is to examine the epidemiology and risk factors of peripheral arterial disease in type 2 diabetes, focusing on the role of postprandial triglycerides and particles.
Resumo:
Soluble peptide/MHC-class-I (pMHC) multimers have recently emerged as unique reagents for the study of specific interactions between the pMHC complex and the TCR. Here, we assessed the relative binding efficiency of a panel of multimers incorporating single-alanine-substituted variants of the tumor-antigen-derived peptide MAGE-A10(254-262) to specific CTL clones displaying different functional avidity. For each individual clone, the efficiency of binding of multimers incorporating MAGE-A10 peptide variants was, in most cases, in good although not linear correlation with the avidity of recognition of the corresponding variant. In addition, we observed two types of discrepancies between efficiency of recognition and multimer binding. First, for some peptide variants, efficient multimer binding was detected in the absence of measurable effector functions. Some of these peptide variants displayed antagonist activity. Second, when comparing different clones we found clear discrepancies between the dose of peptide required to obtain half-maximal lysis in CTL assays and the binding efficiency of the corresponding multimers. These discrepancies, however, were resolved when the differential stability of the TCR/pMHC complexes was determined. For individual clones, decreased recognition correlated with increased TCR/pMHC off-rate. TCR/pMHC complexes formed by antagonist ligands displayed off-rates faster than those of TCR/pMHC complexes formed with weak agonists. In addition, when comparing different clones, the efficiency of multimer staining correlated better with relative multimer off-rates than with half-maximal lysis values. Altogether, the data presented here reconcile and extend our previous results on the impact of the kinetics of interaction of TCR with pMHC complexes on multimer binding and underline the crucial role of TCR/pMHC off-rates for the functional outcome of such interactions.