960 resultados para High field transport


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation has been undertaken into the effects of various radiations on commercially made Al-SiO2-Si Capacitors (MOSCs). Detailed studies of the electrical and physical nature of such devices have been used to characterise both virgin and irradiated devices. In particular, an investigation of the nature and causes of dielectric breakdown in MOSCs has revealed that intrinsic breakdown is a two-stage process dominated by charge injection in a pre-breakdown stage; this is associated with localised high-field injection of carriers from the semiconductor substrate to interfacial and bulk charge traps which, it is proposed, leads to the formation of conducting channels through the dielectric with breakdown occurring as a result of the dissipation of the conduction band energy. A study of radiation-induced dielectric breakdown has revealed the possibility of anomalous hot-electron injection to an excess of bulk oxide traps in the ionization channel produced by very heavily ionizing radiation, which leads to intrinsic breakdown in high-field stressed devices. These findings are interpreted in terms of a modification to the model for radiation-induced dielectric breakdown based upon the primary dependence of breakdown on charge injection rather than high-field mechanisms. The results of a detailed investigation of charge trapping and interface state generation in such MOSCs due to various radiations has revealed evidence of neutron induced interface states, and of the generation of positive oxide charge in devices due to all of the radiations tested. In particular, the greater the linear energy transfer of the radiation, the greater the magnitude of charge trapped in the oxide and the greater the number of interface states generated. These findings are interpreted in terms of Si-H and Si-OH bond-breaking at the Si-SiO2 interface which is enhanced by charge carrier transfer to the interface and by anomalous charge injection to compensate for the excess of charge carriers created by the radiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intraplate volcanism that has created the Hawaiian-Emperor seamount chain is generally thought to be formed by a deep-seated mantle plume. While the idea of a Hawaiian plume has not met with substantial opposition, whether or not the Hawaiian plume shows any geochemical signal of receiving materials from the Earth’s Outer Core and how the plume may or may not be reacting with the overriding lithosphere remain debatable issues. In an effort to understand how the Hawaiian plume works I report on the first in-situ sulfides and bulk rock Platinum Group Element (PGE) concentrations, together with Os isotope ratios on well-characterized garnet pyroxenite xenoliths from the island of Oahu in Hawaii. The sulfides are Fe-Ni Monosulfide Solid Solution and show fractionated PGE patterns. Based on the major elements, Platinum Group Elements and experimental data I interpret the Hawaiian sulfides as an immiscible melt that separated from a melt similar to the Honolulu Volcanics (HV) alkali lavas at a pressure-temperature condition of 1530 ± 100OC and 3.1±0.6 GPa., i.e. near the base or slightly below the Pacific lithosphere. The 187Os/188Os ratios of the bulk rock vary from subchondritic to suprachondritic (0.123-0.164); and the 187Os/188Os ratio strongly correlates with major element, High Field Strength Element (HFSE), Rare Earth Element (REE) and PGE abundances. These correlations strongly suggest that PGE concentrations and Os isotope ratios reflect primary mantle processes. I interpret these correlations as the result of melt-mantle reaction at the base of the lithosphere: I suggest that the parental melt that crystallized the pyroxenites selectively picked up radiogenic Os from the grain boundary sulfides, while percolating through the Pacific lithosphere. Thus the sampled pyroxenites essentially represent crystallized melts from different stages of this melt-mantle reaction process at the base of the lithosphere. I further show that the relatively low Pt/Re ratios of the Hawaiian sulfides and the bulk rock pyroxenites suggest that, upon ageing, such pyroxenites plus their sulfides cannot generate the coupled 186Os- 187Os isotope enrichments observed in Hawaiian lavas. Therefore, recycling of mantle sulfides of pyroxenitic parentage is unlikely to explain the enriched Pt-Re-Os isotope systematics of plume-derived lavas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, the magnetic properties of four transition-metal oxides are presented. Their multiferroic and magnetoelectric phases have been investigated by means of different neutron scattering techniques. The materials TbMnO3 and MnWO4 belong to the group of spin-induced multiferroics. Their ferroelectric polarization can be explained by the inverse DzyaloshinskiiMoriya interaction. Another common feature of both materials is the presence of subsequent magnetic transitions from a spin-density wave to a spin spiral. The features of the phase transitions have been studied in both materials and it could be shown that diffuse magnetic scattering from the spin spiral is present even in the ordered spin-density wave phase. The excitation spectrum in the multiferroic phase of TbMnO3 was investigated in detail and a comprehensive dataset was obtained using time-of-flight spectroscopy. A spin-wave model could be obtained which can quantitatively describe the full dispersion. Furthermore, the polarization of the zone-center excitations could be derived which fit well to data from inelastic neutron spectroscopy and infrared spectroscopy. With the combination of spherical neutron polarimetry and a poling of the sample by an electric field, it was possible to observe the chiral magnetic component of the magnetic excitations in TbMnO3 and MnWO4. The spin-wave model for TbMnO3 obtained in this thesis is able to correctly describe the dispersion of this component. The double tungstate NaFe(WO4)2 is isostructural to the multiferroic MnWO4 and develops a complex magnetic phase diagram. By the use of neutron diffraction techniques, the zero-field structure and high-field structures in magnetic field applied along the b-axis could be determined. The data reveal a direct transition into an incommensurate spin-spiral structure. The value of the incommensurability is driven by anharmonic modulations and shows strong hysteresis effects. The static and dynamic properties in the magnetoelectric spin-glass phase of Ni0.42Mn0.58TiO3 were studied in detail. The spin-glass phase is composed of short-ranged MnTiO3 and NiTiO3-type order. The antiferromagnetic domains could be controlled by crossed magnetic and electric fields, which was visualized using spherical neutron polarimetry. A comprehensive dataset of the magnetic excitations in the spin-glass phase was collected. The dataset revealed correlations in the hexagonal plane which are only weakly coupled along the c-axis. The excitation spectra could be simulated by taking into account the MnTiO3-type order.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SmB6 has been predicted to be a Kondo topological insulator with topologically protected conducting surface states. We have studied quantitatively the electrical transport through surface states in high-quality single crystals of SmB6. We observe a large nonlocal surface signal at temperatures lower than the bulk Kondo gap scale. Measurements and finite-element simulations allow us to distinguish unambiguously between the contributions from different transport channels. In contrast to general expectations, the electrical transport properties of the surface channels were found to be insensitive to high magnetic fields. We propose possible scenarios that might explain this unexpected finding. Local and nonlocal magnetoresistance measurements allowed us to identify possible signatures of helical spin states and strong interband scattering at the surface.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this letter, the velocity distributions of charge carriers in high-mobility polymer thin-film transistors (TFTs) with a diketopyrrolopyrrole- naphthalene copolymer (PDPP-TNT) semiconductor active layer are reported. The velocity distributions are found to be strongly dependent on measurement temperatures as well as annealing conditions. Considerable inhomogeneity is evident at low measurement temperatures and for low annealing temperatures. Such transient transport measurements can provide additional information about charge carrier transport in TFTs which are unavailable using steady-state transport measurements.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we report the device characteristics of ambipolar thin-film transistors (TFTs) based on a diketopyrrolopyrrole-benzothiadiazole copolymer. This polymer semiconductor exhibits the largest comparable electron and hole mobility values in a single organic semiconductor. The key to realizing such high mobility values, which are $0.5&cm}{2}/\hbox{V}̇\hbox{s, is molecular design, i.e., the use of suitable surface treatments of the source/drain contact electrodes and device architectures, particularly top-gate configurations. The subthreshold characteristics of the TFT devices are greatly improved by the use of dual-gate device geometry. We also report the first measurement of the velocity distribution of electron and hole velocities in an ambipolar organic semiconductor.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Conducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning(1) with mobilities around 10(-4) cm(2) V-1 s(-1) to a recent report(2) of 1 cm(2) V-1 s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b] thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism. We show that data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in the Luttinger liquid description of the one-dimensional `metal'.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We demonstrate the distinct glassy transport phenomena associated with the phase separated and spin-glass-like phases of La0.85Sr0.15CoO3, prepared under different heat-treatment conditions. The low-temperature annealed (phase-separated) sample, exhibits a small change in resistance, with evolution of time, as compared to the high-temperature annealed (spin glass) one. However, the resistance change as a function of time, in both cases, is well described by a stretched exponential fit, signifying the slow dynamics. Moreover, the ultraviolet spectroscopy study evidences a relatively higher density of states in the vicinity of EF for low-temperature annealed sample and this correctly points to its less semiconducting behavior.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.