911 resultados para Heterogenous, Mesoscopic, Anisotropic, Control-Volume Finite-Element Method
Resumo:
Due to design and process-related factors, there are local variations in the microstructure and mechanical behaviour of cast components. This work establishes a Digital Image Correlation (DIC) based method for characterisation and investigation of the effects of such local variations on the behaviour of a high pressure, die cast (HPDC) aluminium alloy. Plastic behaviour is studied using gradient solidified samples and characterisation models for the parameters of the Hollomon equation are developed, based on microstructural refinement. Samples with controlled microstructural variations are produced and the observed DIC strain field is compared with Finite Element Method (FEM) simulation results. The results show that the DIC based method can be applied to characterise local mechanical behaviour with high accuracy. The microstructural variations are observed to cause a redistribution of strain during tensile loading. This redistribution of strain can be predicted in the FEM simulation by incorporating local mechanical behaviour using the developed characterization model. A homogeneous FEM simulation is unable to predict the observed behaviour. The results motivate the application of a previously proposed simulation strategy, which is able to predict and incorporate local variations in mechanical behaviour into FEM simulations already in the design process for cast components.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix-free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid.
Resumo:
A novel three-dimensional finite volume (FV) procedure is described in detail for the analysis of geometrically nonlinear problems. The FV procedure is compared with the conventional finite element (FE) Galerkin approach. FV can be considered to be a particular case of the weighted residual method with a unit weighting function, where in the FE Galerkin method we use the shape function as weighting function. A Fortran code has been developed based on the finite volume cell vertex formulation. The formulation is tested on a number of geometrically nonlinear problems. In comparison with FE, the results reveal that FV can reach the FE results in a higher mesh density.
Resumo:
Groundwater represents one of the most important resources of the world and it is essential to prevent its pollution and to consider remediation intervention in case of contamination. According to the scientific community the characterization and the management of the contaminated sites have to be performed in terms of contaminant fluxes and considering their spatial and temporal evolution. One of the most suitable approach to determine the spatial distribution of pollutant and to quantify contaminant fluxes in groundwater is using control panels. The determination of contaminant mass flux, requires measurement of contaminant concentration in the moving phase (water) and velocity/flux of the groundwater. In this Master Thesis a new solute flux mass measurement approach, based on an integrated control panel type methodology combined with the Finite Volume Point Dilution Method (FVPDM), for the monitoring of transient groundwater fluxes, is proposed. Moreover a new adsorption passive sampler, which allow to capture the variation of solute concentration with time, is designed. The present work contributes to the development of this approach on three key points. First, the ability of the FVPDM to monitor transient groundwater fluxes was verified during a step drawdown test at the experimental site of Hermalle Sous Argentau (Belgium). The results showed that this method can be used, with optimal results, to follow transient groundwater fluxes. Moreover, it resulted that performing FVPDM, in several piezometers, during a pumping test allows to determine the different flow rates and flow regimes that can occurs in the various parts of an aquifer. The second field test aiming to determine the representativity of a control panel for measuring mass flus in groundwater underlined that wrong evaluations of Darcy fluxes and discharge surfaces can determine an incorrect estimation of mass fluxes and that this technique has to be used with precaution. Thus, a detailed geological and hydrogeological characterization must be conducted, before applying this technique. Finally, the third outcome of this work concerned laboratory experiments. The test conducted on several type of adsorption material (Oasis HLB cartridge, TDS-ORGANOSORB 10 and TDS-ORGANOSORB 10-AA), in order to determine the optimum medium to dimension the passive sampler, highlighted the necessity to find a material with a reversible adsorption tendency to completely satisfy the request of the new passive sampling technique.
Resumo:
An electrolytic cell for Aluminium production contains molten metal and molten electrolyte, which are subject to high dc-currents and magnetic fields. Lorentz forces arising from the cross product of current and magnetic field may amplify natural gravity waves at the interface between the two fluids, leading to short circuits in extreme cases. The external magnetic field and current distribution in the production cell is computed through a detailed finite element analysis at Torino Polytechnic. The results are then used to compute the magnetohydrodynamic and thermal effects in the aluminium/electrolyte bath. Each cell has lateral dimensions of 6m x 2m, whilst the bath depth is only 30cm. the electrically resistive electrolyte path, which is critical in the operation of the cell, has layer depth of only a few centimetres below each carbon anode. Because the shallow dimensions of the liquid layer a finite-volume shallow-layer technique has been used at Greenwich to compute the resulting flow-field and interface perturbations. The information obtained from this method, i.e. depth averaged velocities and aluminium/electrolyte interface position is then embedded in the three-dimensional finite volume code PHYSICA and will be used to compute the heat transfer and phase change in the cell.
Resumo:
Strengthening of steel structures using externally-bonded carbon fibre reinforced polymers ‘CFRP’ is a rapidly developing technique. This paper describes the behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced polymer sheets. Two steel plates were joined together with adhesive and followed by the application of carbon fibre sheet double strap joint with different bond lengths. The behaviour of the specimens was further investigated by using nonlinear finite element analysis to predict the failure modes and load capacity. In this study, bond failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding which closely matched the results of finite elements. The predicted ultimate loads from the FE analysis are found to be in good agreement with experimental values.
Resumo:
This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
A finite element analysis of thin-walled open-section laminated anisotropic beams is presented herein. A two-noded, 8 degrees of freedom per node thin-walled open-section laminated anisotropic beam finite element has been developed and used. The displacements of the element reference axes are expressed in terms of one-dimensional first order Hermite interpolation polynomials and line member assumptions are invoked in the formulation of the stiffness matrix. The problems of: 1. (a) an isotropic material Z section straight cantilever beam, and 2. (b) a single-layer (0°) composite Z section straight cantilever beam, for which continuum solutions (exact/approximate) are possible, have been solved in order to evaluate the performance of the finite element. Its applicability has been shown by solving the following problems: 3. (c) a two-layer (45°/−45°) composite Z section straight cantilever beam, 4. (d) a three-layer (0°/45°/0°) composite Z section straight cantilever beam.
Resumo:
An explicit finite element modelling method is formulated using a layered shell element to examine the behaviour of masonry walls subject to out-of-plane loading. Masonry is modelled as a homogenised material with distinct directional properties that are calibrated from datasets of a “C” shaped wall tested under pressure loading applied to its web. The predictions of the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. Profound influence of support conditions, aspect ratio, pre-compression and opening to the strength and ductility of masonry walls is exhibited from the sensitivity analyses performed using the model.