998 resultados para Herbicide resistance
Resumo:
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.
Resumo:
Objectives: The aim of this study was to determine the antimicrobial resistance patterns of 125 Campylobacter jejuni and 27 Campylobacter coli isolates from 39 Queensland broiler farms. Methods: Two methods, a disc diffusion assay and an agar-based MIC assay, were used. The disc diffusion was performed and interpreted as previously described (Huysmans MB, Turnidge JD. Disc susceptibility testing for thermophilic campylobacters. Pathology 1997; 29: 209–16), whereas the MIC assay was performed according to CLSI (formerly NCCLS) methods and interpreted using DANMAP criteria. Results: In both assays, no C. jejuni or C. coli isolates were resistant to ciprofloxacin or chloramphenicol, no C. coli were resistant to nalidixic acid, and no C. jejuni were resistant to erythromycin. In the MIC assay, no C. jejuni isolate was resistant to nalidixic acid, whereas three isolates (2.4%) were resistant in the disc assay. The highest levels of resistance of the C. jejuni isolates were recorded for tetracycline (19.2% by MIC and 18.4% by disc) and ampicillin (19.2% by MIC and 17.6% by disc). The C. coli isolates gave very similar results (tetracycline resistance 14.8% by both MIC and disc; ampicillin resistance 7.4% by MIC and 14.8% by disc). Conclusions: This work has shown that the majority of C. jejuni and C. coli isolates were susceptible to the six antibiotics tested by both disc diffusion and MIC methods. Disc diffusion represents a suitable alternative methodology to agar-based MIC methods for poultry Campylobacter isolates.
Resumo:
The aim of this study was to asses results obtained from a range of commonly performed lower extremity “open and closed” chain kinetic tests used for predicting foot function and correlate these test findings to data obtained from the Zebris WinFDM-T system®. When performed correctly these tests are thought to be indicators of lower extremity function. Podiatrists frequently perform examinations of joint and muscle structures to understand biomechanical function; however the relationship between these routine tests and forces generated during the gait cycle are not always well understood. This can introduce a degree of variability in clinical interpretation which creates conjecture regarding the value of these tests.
Resumo:
Strawberry runner production areas in Queensland are assessed for the presence of Pratylenchus vulnus (lesion nematode) and Meloidogyne hapla (root-knot nematode) as part of the approval process for sites used in runner production under the approved runner scheme. M. hapla is known to infest strawberry. The ability of three other Meloidogyne species occurring in Queensland to infest this host was investigated. The species M. arenaria, M. incognita and M. javanica, in addition to M. hapla, were able to reproduce on strawberry roots of the cultivar 'Joy', which sustained higher nematode reproduction rates than 'Jewel' and 'Sweet Charlie'. The ability of species other than M. hapla to infest strawberry needs to be recognised in site selection for runner production, and in screening cultivars for resistance to nematodes.
Resumo:
It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.
Resumo:
Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.
Resumo:
Sorghum ergot, caused predominantly by Claviceps africana Frederickson, Mantle, de Milliano, is a significant threat to the sorghum industry worldwide. The objectives of this study were firstly, to identify molecular markers linked to ergot resistance and to two pollen traits, pollen quantity (PQ) and pollen viability (PV), and secondly, to assess the relationship between the two pollen traits and ergot resistance in sorghum. A genetic linkage map of sorghum RIL population R931945-2-2 x IS 8525 (resistance source) was constructed using 303 markers including 36 SSR, 117 AFLP™, 148 DArT™ and two morphological trait loci. Composite interval mapping identified nine, five, and four QTL linked to molecular markers for percentage ergot infection (PCERGOT), PQ and PV, respectively, at a LOD >2.0. Co-location/linkage of QTL were identified on four chromosomes while other QTL for the three traits mapped independently, indicating that both pollen and non pollen-based mechanisms of ergot resistance were operating in this sorghum population. Of the nine QTL identified for PCERGOT, five were identified using the overall data set while four were specific to the group data sets defined by temperature and humidity. QTL identified on SBI-02 and SBI-06 were further validated in additional populations. This is the first report of QTL associated with ergot resistance in sorghum. The markers reported herein could be used for marker-assisted selection for this important disease of sorghum.
Resumo:
Brassicaceae plants have the potential as part of an integrated approach to replace fumigant nematicides, providing the biofumigation response following their incorporation is not offset by reproduction of plant-parasitic nematodes on their roots. Forty-three Brassicaceae cultivars were screened in a pot trial for their ability to reduce reproduction of three root-knot nematode isolates from north Queensland, Australia: M. arenaria (NQ1), M. javanica (NQ2) and M. arenaria race 2 (NQ5/7). No cultivar was found to consistently reduce nematode reproduction relative to forage sorghum, the current industry standard, although a commercial fodder radish (Raphanus sativus) and a white mustard (Sinapis alba) line were consistently as resistant to the formation of galls as forage sorghum. A second pot trial screened five commercially available Brassicaceae cultivars, selected for their biofumigation potential, for resistance to two nematode species, M. javanica (NQ2) and M. arenaria (NQ5/7). The fodder radish cv. Weedcheck, was found to be as resistant as forage sorghum to nematode reproduction. A multivariate cluster analysis using the resistance measurements, gall index, nematode number per g of root and multiplication for two nematode species (NQ2 and NQ5/7) confirmed the similarity in resistance between the radish cultivar and forage sorghum. A field trial confirmed the resistance of the fodder radish cv. Weedcheck, with a similar reduction in the number of Meloidogyne spp. juveniles recovered from the roots 8 weeks after planting. The use of fodder radish cultivars as biofumigation crops to manage root-knot nematodes in tropical vegetable production systems deserves further investigation.
Resumo:
Resistance to cyfluthrin in broiler farm populations of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in eastern Australia was suspected to have contributed to recent control failures. In 2000-2001, beetles from 11 broiler farms were tested for resistance by comparing them to an insecticide-susceptible reference population by using topical application. Resistance was detected in almost all beetle populations (up to 22 times the susceptible at the LC50), especially in southeastern Queensland where more cyfluthrin applications had been made. Two from outside southeastern Queensland were found to be susceptible. Dose-mortality data generated from the reference population over a range of cyflutbrin concentrations showed that 0.0007% cyfluthrin at a LC99.9 level could be used as a convenient dose to discriminate between susceptible and resistant populations. Using this discriminating concentration, from 2001 to 2005, the susceptibilities of 18 field populations were determined. Of these, 11 did not exhibit complete mortality at the discriminating concentration (mortality range 2.8-97.7%), and in general, cyfluthrin resistance was directly related to the numbers of cyfluthrin applications. As in the full study, populations outside of southeastern Queensland were found to have lower levels of resistance or were susceptible. One population from an intensively farmed broiler area in southeastern Queensland exhibited low mortality despite having no known exposure to cyfluthrin. Comparisons of LC50 values of three broiler populations and a susceptible population, collected in 2000 and 2001 and recollected in 2004 and 2005 indicated that values from the three broiler populations had increased over this time for all populations. The continued use of cyfluthrin for control of A. diaperinus in eastern Australia is currently under consideration.
Resumo:
The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.
Resumo:
Whether or not termites initiate damage to timber via the end grain may determine the need for spot-treating the exposed untreated cut ends of envelope-treated softwood framing material. Australian Coptotermes acinaciformis (Froggatt) were field-tested for their ability to initiate feeding via the end grain of timber (35 × 90 mm) treated with a repellent Tanalith® T envelope. Specimens of commercial radiata pine Pinus radiata D.Don framing timber (untreated) and slash pine Pinus elliottii Englem. (untreated and envelope-treated) were partially clad in fine stainless steel mesh. Clad and unclad specimens were exposed to C. acinaciformis near Townsville, North Queensland, Australia, for four months. Results showed that this species of termite can indeed damage timber via the end grain, including exposed untreated cut ends of envelope-treated material as demonstrated earlier for different populations of C. acinaciformis. Differences between the test conditions in field trials carried out at different times (where C. acinaciformis either did or did not damage timber via the end grain) are discussed. Clearly, outcomes from field studies with preservative-treated materials are dependent upon experimental conditions. Notably, the amount of bait wood (highly termite-susceptible timber substrate) offered in a given method can strongly influence the termite response. Further investigation is required to standardise this aspect of conditions in protocols for the assessment of wood preservatives.
Resumo:
Phosphine is the primary fumigant used to protect the majority of the world' s grain and a variety of other stored commodities from insect pests. Phosphine is playing an increasingly important role in the protection of commodities for two primary reasons. Firstly, use of the alternative fumigant, methyl bromide, has been sharply curtailed and is tightly regulated due to its role in ozone depletion, and secondly, consumers are becoming increasingly intolerant of contact pesticides. Niche alternatives to phosphine exist, but they suffer from a range of factors that limit their use, including: 1) Limited commercial adoption due to expense or slow mode of action; 2) Poor efficacy due to low toxicity, rapid sorption, limited volatility or high density; 3) Public health concerns due to toxicity to handlers or nearby residents, as well as risk of explosion; 4) Poor consumer acceptance due to toxic residues or smell. These same factors limit the prospects of quickly identifying and deploying a new fumigant. Given that resistance toward phosphine is increasing among insect pests, improved monitoring and management of resistance is a priority. Knowledge of the mode of action of phosphine as well as the mechanisms of resistance may also greatly reduce the effort and expense of identifying synergists or novel replacement compounds.
Resumo:
Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.
Resumo:
Aphids can cause substantial damage to cereals, oilseeds and legumes through direct feeding and through the transmission of plant pathogenic viruses. Aphid-resistant varieties are only available for a limited number of crops. In Australia, growers often use prophylactic sprays to control aphids, but this strategy can lead to non-target effects and the development of insecticide resistance. Insecticide resistance is a problem in one aphid pest of Australian grains in Australia, the green peach aphid (Myzus persicae). Molecular analyses of field-collected samples demonstrate that amplified E4 esterase resistance to organophosphate insecticides is widespread in Australian grains across Australia. Knockdown resistance to pyrethroids is less abundant, but has an increased frequency in areas with known frequent use of these insecticides. Modified acetylcholinesterase resistance to dimethyl carbamates, such as pirimicarb, has not been found in Australia, nor has resistance to imidacloprid. Australian grain growers should consider control options that are less likely to promote insecticide resistance, and have reduced impacts on natural enemies. Research is ongoing in Australia and overseas to provide new strategies for aphid management in the future.
Resumo:
There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.