852 resultados para Hepatocellular Injury


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Sleep deprivation (SD) is strongly associated with elevated risk for cardiovascular disease. Objective: To determine the effect of SD on basal hemodynamic functions and tolerance to myocardial ischemia-reperfusion (IR) injury in male rats. Method: SD was induced by using the flowerpot method for 4 days. Isolated hearts were perfused with Langendorff setup, and the following parameters were measured at baseline and after IR: left ventricular developed pressure (LVDP); heart rate (HR); and the maximum rate of increase and decrease of left ventricular pressure (±dp/dt). Heart NOx level, infarct size and coronary flow CK-MB and LDH were measured after IR. Systolic blood pressure (SBP) was measured at start and end of study. Results: In the SD group, the baseline levels of LVDP (19%), +dp/dt (18%), and -dp/dt (21%) were significantly (p < 0.05) lower, and HR (32%) was significantly higher compared to the controls. After ischemia, hearts from SD group displayed a significant increase in HR together with a low hemodynamic function recovery compared to the controls. In the SD group, NOx level in heart, coronary flow CK-MB and LDH and infarct size significantly increased after IR; also SD rats had higher SBP after 4 days. Conclusion: Hearts from SD rats had lower basal cardiac function and less tolerance to IR injury, which may be linked to an increase in NO production following IR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At an intermediate or advanced stage, i.e. stage B or C, based on the Barcelona Clinic Liver Cancer classification of hepatocellular carcinoma (HCC), transarterial chemoembolization (TACE) may be offered as a treatment of palliative intent. We report the case of a patient suffering from acute respiratory distress syndrome after TACE with drug-eluting beads loaded with doxorubicin for HCC. To our knowledge, this is the first case described where a bronchoalveolar lavage was performed, and where significant levels of alveolar eosinophilia and neutrophilia were evident, attributed to a pulmonary toxicity of doxorubicin following liver chemoembolization. © 2014 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental evidence indicates a role of the N-methyl-D-aspartate receptor in the pathogenesis of brain injury occurring during cardiac surgery with cardiopulmonary bypass (CPB). Dextromethorphan is a noncompetitive antagonist of this receptor with a favorable safety profile. Thirteen children age 3-36 months undergoing cardiac surgery with expected CPB of 60 minutes or more were randomly assigned to treatment with dextromethorphan (36-38 mg/kg/day) or placebo administered by naso-gastric tube. Dextromethorphan was absorbed well and reached putative therapeutic levels in blood and cerebrospinal fluid. Adverse effects were not observed. Mild hemiparesis developed after operation in one child of each group, and severe encephalopathy in one of the placebo group. Sharp waves were recorded in postoperative continuous electroencephalography in all placebo (n = 7) but only in 2/6 dextromethorphan treated children (p = 0.02). Pre- and postoperative cranial magnetic resonance imaging (MRI) revealed less pronounced ventricular enlargement in the dextromethorphan group (not significant). An increase of periventricular white matter lesions was visible in two placebo-treated children only. No elevations of cerebrospinal fluid enzymes were observed in either group. Although children with dextromethorphan showed less abnormalities in electroencephalography and MRI, dissimilarities of the treatment groups by chance diminished conclusions to possible protective effects of dextromethorphan at this time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE:: To examine the accuracy of brain multimodal monitoring-consisting of intracranial pressure, brain tissue PO2, and cerebral microdialysis-in detecting cerebral hypoperfusion in patients with severe traumatic brain injury. DESIGN:: Prospective single-center study. PATIENTS:: Patients with severe traumatic brain injury. SETTING:: Medico-surgical ICU, university hospital. INTERVENTION:: Intracranial pressure, brain tissue PO2, and cerebral microdialysis monitoring (right frontal lobe, apparently normal tissue) combined with cerebral blood flow measurements using perfusion CT. MEASUREMENTS AND MAIN RESULTS:: Cerebral blood flow was measured using perfusion CT in tissue area around intracranial monitoring (regional cerebral blood flow) and in bilateral supra-ventricular brain areas (global cerebral blood flow) and was matched to cerebral physiologic variables. The accuracy of intracranial monitoring to predict cerebral hypoperfusion (defined as an oligemic regional cerebral blood flow < 35 mL/100 g/min) was examined using area under the receiver-operating characteristic curves. Thirty perfusion CT scans (median, 27 hr [interquartile range, 20-45] after traumatic brain injury) were performed on 27 patients (age, 39 yr [24-54 yr]; Glasgow Coma Scale, 7 [6-8]; 24/27 [89%] with diffuse injury). Regional cerebral blood flow correlated significantly with global cerebral blood flow (Pearson r = 0.70, p < 0.01). Compared with normal regional cerebral blood flow (n = 16), low regional cerebral blood flow (n = 14) measurements had a higher proportion of samples with intracranial pressure more than 20 mm Hg (13% vs 30%), brain tissue PO2 less than 20 mm Hg (9% vs 20%), cerebral microdialysis glucose less than 1 mmol/L (22% vs 57%), and lactate/pyruvate ratio more than 40 (4% vs 14%; all p < 0.05). Compared with intracranial pressure monitoring alone (area under the receiver-operating characteristic curve, 0.74 [95% CI, 0.61-0.87]), monitoring intracranial pressure + brain tissue PO2 (area under the receiver-operating characteristic curve, 0.84 [0.74-0.93]) or intracranial pressure + brain tissue PO2+ cerebral microdialysis (area under the receiver-operating characteristic curve, 0.88 [0.79-0.96]) was significantly more accurate in predicting low regional cerebral blood flow (both p < 0.05). CONCLUSION:: Brain multimodal monitoring-including intracranial pressure, brain tissue PO2, and cerebral microdialysis-is more accurate than intracranial pressure monitoring alone in detecting cerebral hypoperfusion at the bedside in patients with severe traumatic brain injury and predominantly diffuse injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. RESULTS: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. CONCLUSIONS: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the extent of quality of life (QoL) associated adverse events (AEs) following PRECISION TACE with DC Bead compared with conventional transarterial chemoembolisation (cTACE). Methods and Materials: 201 intermediate HCC patients were treated with DC Bead (PRECISION TACE) or conventional TACE (cTACE) with doxorubicin in the PRECISION V clinical study. 93 patients were treated with DC Bead and 108 Patients with cTACE every 2 months and followed up for 6 months. AEs were classified according to the South West Oncology Group criteria. QoL associated AEs were defined as alopecia, constipation, nausea, vomiting, pyrexia, chills, asthenia, fatigue, and headache. Results: The biggest difference in QoL associated AEs was for alopecia: 2 patients (2.2%) for DC-Bead versus 21 patients (19.4%) for cTACE. For other clinical symptoms, constipation (n=10; 10.8% vs. n=13; 12%), vomiting (n=10; 10.8% vs. n=14; 13.0%), pyrexia (n=16; 17.2% vs. n=26; 24.1%), chills (n=1; 1.1% vs. n=5; 4.6%), and headache (n=2; 2.2% vs. n=8; 7.4%) showed lower incidence in the DC Bead group versus cTACE. Nausea, n= 15; 13.9% (n=15; 16.1%) and fatigue, n=6; 5.6% (n=13; 14.0%) were lower for cTACE. Total dose of doxorubicin was on average 35% higher in the DC Bead group. Conclusion: Although patients in the DC Bead group received a higher doxorubicin dose, less QoL associated AEs were reported for this group. Alopecia, the most obvious outward sign of toxicity, was only reported in a tenth of DC Bead patients. Thus, PRECISION TACE with DC Bead improves quality of life associated adverse events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate whether respiratory acidosis modulates ventilator-induced lung injury (VILI), we perfused (constant flow) 21 isolated sets of normal rabbit lungs, ventilated them for 20 min (pressure controlled ventilation [PCV] = 15 cm H(2)O) (Baseline) with an inspired CO(2) fraction adjusted for the partial pressure of CO(2) in the perfusate (PCO(2) approximately equal to 40 mm Hg), and then randomized them into three groups. Group A (control: n = 7) was ventilated with PCV = 15 cm H(2)O for three consecutive 20-min periods (T1, T2, T3). In Group B (high PCV/normocapnia; n = 7), PCV was given at 20 (T1), 25 (T2), and 30 (T3) cm H(2)O. The targeted PCO(2) was 40 mm Hg in Groups A and B. Group C (high PCV/hypercapnia; n = 7) was ventilated in the same way as Group B, but the targeted PCO(2) was approximately equal to 70 to 100 mm Hg. The changes (from Baseline to T3) in weight gain (Delta WG: g) and in the ultrafiltration coefficient (Delta K(f) = gr/min/ cm H(2)O/100g) and the protein and hemoglobin concentrations in bronchoalveolar lavage fluid (BALF) were used to assess injury. Group B experienced a significantly greater Delta WG (14.85 +/- 5.49 [mean +/- SEM] g) and Delta K(f) (1.40 +/- 0.49 g/min/cm H(2)O/100 g) than did either Group A (Delta WG = 0.70 +/- 0.43; Delta K(f) = 0.01 +/- 0.03) or Group C (Delta WG = 5.27 +/- 2.03 g; Delta K(f) = 0.25 +/- 0.12 g/min/cm H(2)O/ 100 g). BALF protein and hemoglobin concentrations (g/L) were higher in Group B (11.98 +/- 3.78 g/L and 1.82 +/- 0.40 g/L, respectively) than in Group A (2.92 +/- 0.75 g/L and 0.38 +/- 0.15 g/L) or Group C (5.71 +/- 1.88 g/L and 1.19 +/- 0.32 g/L). We conclude that respiratory acidosis decreases the severity of VILI in this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sunitinib (SU) is a multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activity. The objective of this trial was to demonstrate antitumor activity of continuous SU treatment in patients with hepatocellular carcinoma (HCC). PATIENTS AND METHODS: Key eligibility criteria included unresectable or metastatic HCC, no prior systemic anticancer treatment, measurable disease, and Child-Pugh class A or mild Child-Pugh class B liver dysfunction. Patients received 37.5 mg SU daily until progression or unacceptable toxicity. The primary endpoint was progression-free survival at 12 weeks (PFS12). RESULTS: Forty-five patients were enrolled. The median age was 63 years; 89% had Child-Pugh class A disease and 47% had distant metastases. PFS12 was rated successful in 15 patients (33%; 95% confidence interval, 20%-47%). Over the whole trial period, one complete response and a 40% rate of stable disease as the best response were achieved. The median PFS duration, disease stabilization duration, time to progression, and overall survival time were 1.5, 2.9, 1.5, and 9.3 months, respectively. Grade 3 and 4 adverse events were infrequent. None of the 33 deaths were considered drug related. CONCLUSION: Continuous SU treatment with 37.5 mg daily is feasible and has moderate activity in patients with advanced HCC and mild to moderately impaired liver dysfunction. Under this trial design (>13 PFS12 successes), the therapy is considered promising. This is the first trial describing the clinical effects of continuous dosing of SU in HCC patients on a schedule that is used in an ongoing, randomized, phase III trial in comparison with the current treatment standard, sorafenib (ClinicalTrials.gov identifier, NCT00699374).