985 resultados para Helium Hamiltonian
Resumo:
We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4K ≤ T ≤ 300K and hydrostatic pressure P ≤ 250MPa. Helium ( 4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1MPa (ambient pressure) and 104MPa on a single crystal of azurite, Cu 3(CO 3) 2(OH) 2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system. © 2012 American Institute of Physics.
Resumo:
We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.
Resumo:
A rescale of the phase space for a family of two-dimensional, nonlinear Hamiltonian mappings was made by using the location of the first invariant Kolmogorov-Arnold-Moser (KAM) curve. Average properties of the phase space are shown to be scaling invariant and with different scaling times. Specific values of the control parameters are used to recover the Kepler map and the mapping that describes a particle in a wave packet for the relativistic motion. The phase space observed shows a large chaotic sea surrounding periodic islands and limited by a set of invariant KAM curves whose position of the first of them depends on the control parameters. The transition from local to global chaos is used to estimate the position of the first invariant KAM curve, leading us to confirm that the chaotic sea is scaling invariant. The different scaling times are shown to be dependent on the initial conditions. The universality classes for the Kepler map and mappings with diverging angles in the limit of vanishing action are defined. © 2013 Published by Elsevier Inc. All rights reserved.
Resumo:
In this paper we present a set of generic results on Hamiltonian non-linear dynamics. We show the necessary conditions for a Hamiltonian system to present a non-twist scenario and from that we introduce the isochronous resonances. The generality of these resonances is shown from the Hamiltonian given by the Birkhof-Gustavson normal form, which can be considered a toy model, and from an optic system governed by the non-linear map of the annular billiard. We also define a special kind of transport barrier called robust torus. The meanders and shearless curves are also presented and we show the most robust shearless barrier associated with the rotation numbers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Starting out with an anomaly free lagrangian formulation for chiral scalars, which includes a Wess-Zumino term (to cancel the anomaly), we formulate the corresponding hamiltonian problem. Then we use the (quantum) Siegel invariance to choose a particular solution, which turns out to coincide with the one obtained by Floreanini and Jackiw. © 1988.
Resumo:
The aim of this paper is to find an odd homoclinic orbit for a class of reversible Hamiltonian systems. The proof is variational and it employs a version of the concentration compactness principle of P. L. Lions in a lemma due to Struwe.
Resumo:
Liquid configurations generated by Metropolis Monte Carlo simulations are used in time-dependent density functional theory calculations of the spectral line shifts and line profiles of the lowest lying excitation of the alkaline earth atoms, Be, Mg, Ca, Sr and Ba embedded in liquid helium. The results are in very good agreement with the available experimental data. Special attention is given to the calculated spectroscopic shift and the associated line broadening. The analysis specifies the inhomogeneous broadening of the three separate contributions due to the splitting of the s -> p transition of the alkaline earth atom in the liquid environment. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.
Resumo:
A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.
Resumo:
Die diffusionsgewichtete Magnetresonanztomographie (MRT) mit dem hyperpolarisierten Edelgas-Isotop 3He ist ein neues Verfahren zur Untersuchung von Erkrankungen der Atem-wege und der Lunge. Die Diffusionsbewegung der 3He-Atome in den Luftwegen der Lunge wird durch deren Wände begrenzt, wobei diese Einschränkung sowohl von den Dimensionen der Atemwege als auch von den Messparametern abhängt. Man misst daher einen scheinbaren Diffusionskoeffizienten (Apparent Diffusion Coefficient, ADC) der kleiner ist als der Diffusionskoeffizient bei freier Diffusion. Der ADC gestattet somit eine qualitative Abschät-zung der Größe der Luftwege und deren krankhafte Veränderung, ohne eine direkte Abbil-dung der Luftwege selbst. Eine dreidimensionale Abbildung der räumlichen Verteilung von Lungenschädigungen wird dadurch möglich. Ziel der vorliegenden Arbeit war es, ein tieferes physikalisch fundiertes Verständnis der 3He-Diffusionsmessung zu ermöglichen und die Methode der diffusionsgewichteten 3He-MRT hin zur Erfassung des kompletten 3He-Diffusionstensors weiterzuentwickeln. Dazu wurde systematisch im Rahmen von Phantom- und tierexperimentellen Studien sowie Patientenmes-sungen untersucht, inwieweit unterschiedliche Einflussfaktoren das Ergebnis der ADC-Messung beeinflussen. So konnte beispielsweise nachgewiesen werden, dass residuale Luftströmungen am Ende der Einatmung keinen Einfluss auf den ADC-Wert haben. Durch Simulationsrechnungen konnte gezeigt werden, in welchem Maße sich die durch den Anregungspuls hervorgerufene Abnah-me der Polarisation des 3He-Gases auf den gemessenen ADC-Wert auswirkt. In einer Studie an lungengesunden Probanden und Patienten konnte die Wiederholbarkeit der ADC-Messung untersucht werden, aber auch der Einfluss von Gravitationseffekten. Diese Ergebnisse ermöglichen genauere Angaben über systematische und statistische Messfehler, sowie über Grenzwerte zwischen normalem und krankhaft verändertem Lungengewebe. Im Rahmen dieser Arbeit wurde die bestehende diffusionsgewichtete Bildgebung methodisch zur Erfassung des kompletten Diffusionstensors von 3He in der Lunge weiterentwickelt. Dies war wichtig, da entlang der Luftwege weitestgehend freie Diffusion vorherrscht, während senkrecht zu den Luftwegen die Diffusion eingeschränkt ist. Mit Hilfe von Simulationsrech-nungen wurde der kritische Einfluss von Rauschen in den MRT-Bildern auf die Qualität der Messergebnisse untersucht. Diese neue Methodik wurde zunächst an einem Phantom beste-hend aus einem Bündel aus Glaskapillaren, deren innerer Durchmesser mit dem des mensch-lichen Azinus übereinstimmt, validiert. Es ergab sich eine gute Übereinstimmung zwischen theoretischen Berechnungen und experimentellen Ergebnissen. In ersten Messungen am Menschen konnten so unterschiedliche Anisotropiewerte zwischen lungengesunden Proban-den und Patienten gefunden werden. Es zeigte sich eine Tendenz zu isotroper Diffusion bei Patienten mit einem Lungenemphysem. Zusammenfassend tragen die Ergebnisse der vorliegenden Arbeit zu einem besseren Ver-ständnis der ADC-Messmethode bei und helfen zukünftige Studien aufgrund des tieferen Verständnisses der die 3He Messung beeinflussenden Faktoren besser zu planen.
Resumo:
The current hypothesis that human pulmonary alveolarization is complete by 3 years is contradicted by new evidence of alveolarization throughout adolescence in mammals.