864 resultados para Heat shielding
Resumo:
Better models are needed for radiative heat transfer in boiler furnaces. If the process is known better, combustion in the furnace can be optimized to produce low emissions. It makes the process to be environmental friendly. Furthermore, if there is a better model of the furnace it can more fully explain what is happening inside the furnace. Using of the model one can quickly and easily analyze how it operates with bio fuels, moist fuels or difficult fuels and improve the operation. Models helps with better estimation of furnace dimensions and result in more accurate understanding of operation. Key component lacking in these models is radiative heat transfer in particle laden gases. If there are no particles than radiative heat transfer can be calculated approximately. There are two problems with current models when used with flow modeling. The first one is a need to account for a particle laden gas and the second one is an absence of a fast algorithm. Fast calculation is needed if radiative heat transfer calculation is done for a large CDF model. Computations slow down if time is required for calculating radiative properties over and over again. This thesis presents a band model for radiative heat transfer in boiler furnaces. Advantage is a quickness of calculation and account of particles in the process.
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.
Resumo:
The optimal design of a heat exchanger system is based on given model parameters together with given standard ranges for machine design variables. The goals set for minimizing the Life Cycle Cost (LCC) function which represents the price of the saved energy, for maximizing the momentary heat recovery output with given constraints satisfied and taking into account the uncertainty in the models were successfully done. Nondominated Sorting Genetic Algorithm II (NSGA-II) for the design optimization of a system is presented and implemented inMatlab environment. Markov ChainMonte Carlo (MCMC) methods are also used to take into account the uncertainty in themodels. Results show that the price of saved energy can be optimized. A wet heat exchanger is found to be more efficient and beneficial than a dry heat exchanger even though its construction is expensive (160 EUR/m2) compared to the construction of a dry heat exchanger (50 EUR/m2). It has been found that the longer lifetime weights higher CAPEX and lower OPEX and vice versa, and the effect of the uncertainty in the models has been identified in a simplified case of minimizing the area of a dry heat exchanger.
Resumo:
This study illustrates the different types of plate heat exchangers that are commonly used in various domestic and industrial applications. The main purpose of this paper was to devise a methodology that is capable of calculating optimum number of plates in the design of a plate heat exchanger. To obtain the appropriate number of plates, typically several iterations must be made before a final acceptable design is completed, since plate amount depends on many factors such as, flow velocities, physical properties of the streams, flow channel geometry, allowable pressure drop, plate dimensions, and the gap between the plates. The methodology presented here can be used as a general guide for designing a plate heat exchanger. To investigate the effects of relevant parameters on the thermal-hydraulic design of a plate heat exchanger, several experiments were carried out for single-phase and counter flow arrangement with two brazed plate heat exchangers by varying the flow rates and the inlet temperatures of the fluid streams. The actual heat transfer coefficients obtained based on the experiment were nearly close to the calculated values and to improve the design, a correction factor was introduced. Besides, the effect of flow channel velocity on the pressure drop inside the unit is presented.
Resumo:
It is often reasonable to convert old boiler to bubbling fluidized bed boiler instead of building a new one. Converted boiler consists of old and new heat surfaces which must be fitted to operate together. Prediction of heat transfer in not so ideal conditions sets challenges for designers. Two converted boilers situated in Poland were studied on the grounds of acceptance tests and further studies. Calculation of boiler process was performed with boiler design program. Main interest was heat transfer in superheaters and factors affecting it. Theory for heat transfer is presented according to information found from literature. Results obtained from experimental studies and calculations have been compared. With correct definitions calculated parameters corresponded well to measured data at boiler maximum design load. However overload situations revealed to be difficult to model at least without considering changes in the combustion process which requires readjustments to the design program input values.
Resumo:
Chromium (VI) removal and its reduction to chromium (III) from aqueous solution by untreated and heat-treated Quercus cerris and heat-treated Quercus suber black agglomerate cork granules was investigated. Initial screening studies revealed that among the sorbents tested, untreated Q. cerris and Q. suber black agglomerate are the most efficient in the removal of Cr(VI) ions and were selected for adsorption essays. Heat treatment adversely affected chromium adsorption and chromium (VI) reduction in Q. cerris cork. The highest metal uptake was found at pH 3.0 for Q. cerris and pH 2.0 for black agglomerate. The experimental data fitted the Langmuir model and the calculated qmax was 22.98 mg/g in black agglomerate and 21.69 mg/g in untreated Q. cerris cork. The FTIR results indicated that while in black agglomerate, lignin is the sole component responsible for Cr(VI) sorption, and in untreated Q. cerris cork, suberin and polysaccharides also play a significant role on the sorption. The SEM-EDX results imply that chromium has a homogenous distribution within both cork granules. Also, phloemic residues in Q. cerris granules showed higher chromium concentration. The results obtained in this study show that untreated Q. cerris and black agglomerate cork granules can be an effective and economical alternative to more costly materials for the treatment of liquid wastes containing chromium
Resumo:
From the boiler design point of view, it is imperative to know and understand the operation of the boiler. Since comprehensive measurement of a large furnace is impossible, the furnace can be modeled in order to study its behavior and phenomena. This requires the used model to be validated to correspond with the physical furnace behavior. In this thesis, a three dimensional furnace model is validated to match a bituminous coal utilizing, supercritical once-through circulating fluidized bed combustor based on measurement data. The validated model is used for analyzing the furnace heat transfer. Other heat transfer analysis methods are energy balance method based on tube surface temperature measurements and a method based on measured temperature difference between the tube crest and the fin. The latter method was developed in the thesis using Fluent-software. In the theory part, literature is reviewed and the fundamental aspects of circulating fluidized bed are discussed. These aspects are solid particle behavior in fluidization known as hydrodynamics, behavior of fuel and combustion and heat transfer. Fundamental aspects of modeling are also presented.
Resumo:
The identifiability of the parameters of a heat exchanger model without phase change was studied in this Master’s thesis using synthetically made data. A fast, two-step Markov chain Monte Carlo method (MCMC) was tested with a couple of case studies and a heat exchanger model. The two-step MCMC-method worked well and decreased the computation time compared to the traditional MCMC-method. The effect of measurement accuracy of certain control variables to the identifiability of parameters was also studied. The accuracy used did not seem to have a remarkable effect to the identifiability of parameters. The use of the posterior distribution of parameters in different heat exchanger geometries was studied. It would be computationally most efficient to use the same posterior distribution among different geometries in the optimisation of heat exchanger networks. According to the results, this was possible in the case when the frontal surface areas were the same among different geometries. In the other cases the same posterior distribution can be used for optimisation too, but that will give a wider predictive distribution as a result. For condensing surface heat exchangers the numerical stability of the simulation model was studied. As a result, a stable algorithm was developed.
Resumo:
The moisture sorption isotherms of Chilean papaya were determined at 5, 20, and 45 ºC, over a relative humidity range of 10-95%. The GAB, BET, Oswin, Halsey, Henderson, Smith, Caurie and Iglesias-Chirife models were applied to the sorption experimental data. The goodness of fit of the mathematical models was statistically evaluated by means of the determination coefficient, mean relative percentage deviation, sum square error, root-mean-square error, and chi-square values. The GAB, Oswin and Halsey models were found to be the most suitable for the description of the sorption data. The sorption heats calculated using the Clausius-Clapeyron equation were 57.35 and 59.98 kJ·mol-1, for adsorption and desorption isotherms, respectively.
Resumo:
The purpose for the thesis was to study the thermo treatment of finger-jointed wood. The thesis concentrated on examining the tensile and bending strength of finger-jointed and thermo treated wood. The aim was to find out how different treatment temperature levels and adhesives influence the strength of wood that has been finger-jointed before heat treatment. Secondary objectives were to examine the influence of the treatment time at one temperature, determine differences in the strength between the joints in heartwood and sapwood, examine the visual appearance of the finger joints after the treatment and establish possibilities to reach a characteristic strength level corresponding to C14. Only minor differences in strength properties were measured between the finger-jointed wood treatments II and III. A greater difference was shown between these two treatment temperatures I, which lead to reduced strength. The average strength of joints glued with adhesive 2 was higher after treatments II and III compared to those glued with the adhesive 1. At the treatment temperature I, the adhesive 1 strength properties were at the same level compared to the adhesive 2 or better. There were not any significant differences.
Resumo:
Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.
Resumo:
Protein homeostasis is essential for cells to prosper and survive. Various forms of stress, such as elevated temperatures, oxidative stress, heavy metals or bacterial infections cause protein damage, which might lead to improper folding and formation of toxic protein aggregates. Protein aggregation is associated with serious pathological conditions such as Alzheimer’s and Huntington’s disease. The heat shock response is a defense mechanism that protects the cell against protein-damaging stress. Its ancient origin and high conservation among eukaryotes suggest that the response is crucial for survival. The main regulator of the heat shock response is the transcription factor heat shock factor 1 (HSF1), which induces transcription of genes encoding protective molecular chaperones. In vertebrates, a family of four HSFs exists (HSF1-4), with versatile functions not only in coping with acute stress, but also in development, longevity and cancer. Thus, knowledge of the HSFs will aid in our understanding on how cells survive suboptimal circumstances, but will also provide insights into normal physiological processes as well as diseaseassociated conditions. In this study, the function and regulation of HSF2 have been investigated. Earlier gene inactivation experiments in mice have revealed roles for HSF2 in development, particularly in corticogenesis and spermatogenesis. Here, we demonstrate that HSF2 holds a role also in the heat shock response and influences stress-induced expression of heat shock proteins. Intriguingly, DNA-binding activity of HSF2 upon stress was dependent on the presence of intact HSF1, suggesting functional interplay between HSF1 and HSF2. The underlying mechanism for this phenomenon could be configuration of heterotrimers between the two factors, a possibility that was experimentally verified. By changing the levels of HSF2, the expression of HSF1-HSF2 heterotrimer target genes was altered, implementing HSF2 as a modulator of HSF-mediated transcription. The results further indicate that HSF2 activity is dependent on its concentration, which led us to ask the question of how accurate HSF2 levels are achieved. Using mouse spermatogenesis as a model system, HSF2 was found to be under direct control of miR-18, a miRNA belonging to the miR-17~92 cluster/Oncomir-1 and whose physiological function had remained unclear. Investigations on spermatogenesis are severely hampered by the lack of cell systems that would mimic the complex differentiation processes that constitute male germ cell development. Therefore, to verify that HSF2 is regulated by miR-18 in spermatogenesis, a novel method named T-GIST (Transfection of Germ cells in Intact Seminiferous Tubules) was developed. Employing this method, the functional consequences of miR-18-mediated regulation in vivo were demonstrated; inhibition of miR- 18 led to increased expression of HSF2 and altered the expression of HSF2 target genes Ssty2 and Speer4a. Consequently, the results link miR-18 to HSF2-mediated processes such as germ cell maturation and quality control and provide miR-18 with a physiological role in gene expression during spermatogenesis.Taken together, this study presents compelling evidence that HSF2 is a transcriptional regulator in the heat shock response and establishes the concept of physical interplay between HSF2 and HSF1 and functional consequences thereof. This is also the first study describing miRNA-mediated regulation of an HSF.
Resumo:
The purpose of this paper was to observe the use of bedding (wood shavings) in physiological variables that indicate thermal stress in gestating sows. The experiment was conducted in order to evaluate the effect of two types of floor (concrete and wood shavings). Worse microclimatic conditions were observed in bedding systems (P<0.05), with an increase in temperature and enthalpy of 1.14 ºC and 2.37 kJ.kg dry air-1, respectively. The floor temperature at the dirty area was higher in the bedding presence in comparison to its absence. In spite of the worse microclimatic conditions in the bedding, the rectal temperature did not differ significantly (P>0.05) but the skin surface temperature was higher in the bedding systems. The same occurred with the respiratory rates. The physical characteristics of the floor material influenced the rate of heat loss by conductance. Estimated values were 35.04 and 7.99 W m-2 for the conductive heat loss between the animal and floor for treatments with or without bedding, respectively. The use of bedding in sow rearing has a negative impact on microclimatic conditions, what implies in thermoregulatory damages.