947 resultados para Heart and kidney adaptations
Resumo:
Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.
Resumo:
Background. Australian Aborigines are experiencing epidemic proportions of renal disease, marked by albuminuria and, variably, hematuria. They also have high rates of low birth weight, which have been associated with lower kidney volumes and higher blood pressures. The authors evaluated relationships between kidney volume, blood pressure, albuminuria, and hematuria in 1 homogeneous group. Methods Forty-three percent (672 of 1,560) of the population in a remote coastal Australian Aboriginal community aged 4.4 to 72.1 years participated in the study. Results: Kidney size correlated closely with body size. Systolic blood pressure (SBP) was correlated inversely with kidney length and kidney volume, after adjusting for age, sex, and body surface area (BSA); a 1-cm increase in mean kidney length was associated with a 2.2-mm Hg decrease in SBP, and a 10-mL increase in mean kidney volume was associated with a 0.6-mm Hg decrease in SBP (P = 0.001). Mean kidney volume explained 10% of the variance in SBP in a multivariate model containing age, sex, and BSA. In addition to higher SBP, adults who had the lowest quartiles of kidney volume also had the highest levels of overt albuminuria (P = 0.044). Conclusion: Smaller kidneys predispose to higher blood pressures and albuminuria in this population. The lower volumes possibly represent kidneys with reduced nephron numbers, which might be related to an adverse intrauterine environment. Susceptibility to renal disease could be a direct consequence of reduced nephron numbers; the higher blood pressures with which they are associated could also contribute to, as well as derive from, this association.
Resumo:
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.
Resumo:
It has been reported that-growth hormone (GH) deficiency induced cardiomyopathy responds to growth hormone replacement therapy. We describe the case of a middle-aged male with cardiomyopathic heart failure and growth hormone deficiency of the adult secondary to surgical panhypopituitarism. We demonstrate clinical and hemodynamic improvement of cardiac function with growth hormone replacement therapy despite underlying structural heart disease. Copyright (C) 2005 by the International Society for Heart and Lung Transplantation.
Resumo:
Morbidities and deaths from noncommunicable chronic diseases are greatly increased in remote Australian Aboriginal communities, but little is known of the underlying community-based health profiles. We describe chronic-disease profiles and their risk factors in 3 remote communities in the Northern Territory. Consenting adults (18+ years of age) in 3 communities participated in a brief history and examination between 2000 and mid-2003 as part of a systematic program to improve chronic-disease awareness and management. Participation was 67%,128%, and 62% in communities A, B, and C, respectively with a total of 1070 people examined. Current smokers included 41% of females and 72% of males. Most men were current drinkers, but most women were not. Parameters of body weight differed markedly by community, with mean body mass index (BMC) varying from 21.4 to 27.9 kg/m(2). Rates of chronic diseases were excessive but differed markedly; an almost threefold difference in the likelihood of any morbidity existed between communities A and C. Rates increased with age, but the greatest numbers of people with morbidities were in the middle-aged group. Most people had multiple morbidities with tremendous overlap. Hypertension and kidney disease appear to be early manifestations of the integrated chronic-disease syndrome, while diabetes is a late manifestation or complication. Substantial numbers of new cases of disease were identified by testing, and blood pressure improved in treated people with hypertension. Wide variations occur in body habitus, risk factors, and chronic-disease rates among communities, but an overwhelming need for effective smoking interventions exists in all. Systematic screening is useful in identifying high-risk individuals, most at early treatable stages there. Findings are very important for estimating current treatment needs, future burdens of disease, and for needs-based health services planning. Resources required will vary according to the burden of disease. (C) 2005 by the National Kidney Foundation, Inc.
Resumo:
Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.
Resumo:
Background: To investigate factors responsible for muscle loss in cachexia changes in nucleic acid and protein levels have been determined and compared with those induced by a tumour-produced cachectic factor, proteolysis-inducing factor (PIF). Materials and Methods: Mice were transplanted with the MAC16 tumour, while non-tumour bearing mice received PIF (1.5 mg/kg; i.v.) over a 24 h period. Results: There was an exponential decrease in RNA and protein in gastrocnemius muscle with weight loss without an effect on the DNA content. Levels of myosin followed the decrease in total protein, while actin levels remained constant. There was also a significant loss of protein from soleus muscle and spleen, but not from heart, liver and kidney. PIF also produced a significant loss of RNA and protein in spleen and reduced the protein content of soleus muscle. Conclusion: This suggests that PIF may be responsible for changes in protein and RNA content of tissues with the development of cachexia.
Resumo:
Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P <0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P <0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P <0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P <0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P <0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome. © Journal compilation © 2008 The Physiological Society.
Resumo:
The Neural Crest (NC) is a multipotential group of cells that arises from the dorsal aspect of the neural tube early in development. It is well established that a group of NC cells named Cardiac Neural Crest (CNC) migrates to the heart and plays a critical role in the remodeling of the aortic arch arteries and septation of the outflow tract. In this study, using the mouse mutant Pax3sp/sp that has CNC deficits I have identified a putative novel role for the CNC in regulating apoptosis in the atrioventricular (AV) endocardial cushion. The AV endocardial cushion undergoes remodeling to give rise to the cardiac AV valves. Using a transgenic mouse that carries the LacZ reporter gene under the control of the Dopachrome tautomerase promoter (Dct-LacZ), I found that another NC derived population, melanocyte precursors, also contribute to the AV endocardial cushion and developing AV valves. The analysis of Dct-LacZ embryos at different stages showed that NC cells already committed to the melanocytic fate migrate to the heart along the same initial pathway taken by those that will populate the skin. Hypopigmented mice carrying mutations in the Kit and Endothelin receptor b genes, that are critical for the proper development of skin melanocytes, do not have cardiac melanocytes indicating that cardiac and skin melanocyte precursors share the same initial signaling requirements. The analysis of murine adult hearts showed that melanocytes are mostly found in the atrial sides of the tricuspid and mitral valve leaflets. The distribution of melanocytes in the AV valves corresponds exactly to areas of high Versican B expression, a proteoglycan essential for the process of AV valve remodeling. To evaluate a potential role for melanocytes in the AV valves, a nanoindentation analysis of the tricuspid valves of wild type, hypopigmented and hyperpigmented mice was performed. The storage modulus, a measure of stiffness, for the leaflets obtained from hyperpigmented mice was considerably higher (10.5GPa) than that for the leaflets from wild type (7.5GPa) and hypopigmented animals (between 3.5 and 5.5 GPa) suggesting that melanocytes may contribute to the mechanical properties of the AV valves.
Resumo:
Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd ~ 10− 8 M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2 ± 6.0% and 56.4 ± 5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme.
Resumo:
To detect rainbow trout hatcheries for infectious hematopoietic necrosis virus, samples of kidney, liver, spleen, muscle, intestine, heart and gills of trout larvae were obtained from a number of trout hatcheries from different provinces. Also tissue samples were obtained for molecular works using RT- PCR procedure. Tissue samples were processed using standard histotechnique and the obtained sections were stained using immunohistochemical procedure. From 100 examined samples 35 were positive for IHN by immunohistochemical test. Also, from 100 samples examined, 43 were positive in RT- PCR studies. The obtained results show that some rainbow trout hatcheries are contaminated in different regions of country. Therefore, a definition of prevention and eradication criteria are now critical to protect the unaffected areas within the country.
Resumo:
Obesity is associated with development of the cardiorenal metabolic syndrome, which is a constellation of risk factors, such as insulin resistance, inflammatory response, dyslipidemia, and high blood pressure that predispose affected individuals to well-characterized medical conditions such as diabetes, cardiovascular and kidney chronic disease. The study was designed to establish relationship between metabolic and inflammatory disorder, renal sodium retention and enhanced blood pressure in a group of obese subjects compared with age-matched, lean volunteers. The study was performed after 14 h overnight fast after and before OGTT in 13 lean (BMI 22.92 ± 2.03 kg/m(2)) and, 27 obese (BMI 36.15 ± 3.84 kg/m(2)) volunteers. Assessment of HOMA-IR and QUICKI index were calculated and circulating concentrations of TNF-α, IL-6 and C-reactive protein, measured by immunoassay. THE STUDY SHOWS THAT A HYPERINSULINEMIC (HI: 10.85 ± 4.09 μg/ml) subgroup of well-characterized metabolic syndrome bearers-obese subjects show higher glycemic and elevated blood pressure levels when compared to lean and normoinsulinemic (NI: 5.51 ± 1.18 μg/ml, P < 0.027) subjects. Here, the combination of hyperinsulinemia, higher HOMA-IR (HI: 2.19 ± 0.70 (n = 12) vs. LS: 0.83 ± 0.23 (n = 12) and NI: 0.98 ± 0.22 (n = 15), P < 0.0001) associated with lower QUICKI in HI obese when compared with LS and NI volunteers (P < 0.0001), suggests the occurrence of insulin resistance and a defect in insulin-stimulated peripheral action. Otherwise, the adiponectin measured in basal period was significantly enhanced in NI subjects when compared to HI groups (P < 0.04). The report also showed a similar insulin-mediated reduction of post-proximal urinary sodium excretion in lean (LS: 9.41 ± 0.68% vs. 6.38 ± 0.92%, P = 0.086), and normoinsulinemic (NI: 8.41 ± 0.72% vs. 5.66 ± 0.53%, P = 0.0025) and hyperinsulinemic obese subjects (HI: 8.82 ± 0.98% vs. 6.32 ± 0.67%, P = 0.0264), after oral glucose load, despite elevated insulinemic levels in hyperinsulinemic obeses. In conclusion, this study highlights the importance of adiponectin levels and dysfunctional inflammatory modulation associated with hyperinsulinemia and peripheral insulin resistance, high blood pressure, and renal dysfunction in a particular subgroup of obeses.
Resumo:
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation, but also in cell death, transcriptional activation of hypertrophy, inflammation and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Resumo:
Neuronal ceroid-lipofuscinosis (NCL) is a recent term, proposed for acurate designation of the late-onset types of Amaurotic Family Idiocy (AFI). Histopathology shows ubiquitous intraneuronal accumulation of lipopigments, being the most important factor for characterization of the entity at present time. Biochemical changes and pathogenesis are obscure. NCL is in contrast to the infantile type of AFI (Tay-Sachs disease), in which intraneuronal accumulation of gangliosides (sphingolipids) is due to the well known deficiency of a lysosomal enzyme. The authors report on four cases of NCL, two brothers of the late infantile (Jansky-Bielschowsky) type and a brother and a sister of the juvenile (Spielmeyer-Sjögren) type. One autopsy and three cortical biopsies revealed moderate to severe distention of the neurons by lipopigment, with nerve cell loss, gliosis and cerebral atrophy. Lipopigment was also increased in liver, heart and spleen. The patients were the first in Brazilian literature in whom the storage material was identified as lipopigment by histochemical methods. A brief summary of the clinical features of NCL is presented, and relevant problems are discussed, concerning interpretation of the nature of the storage material, and significance of the disease for gerontological research.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física