986 resultados para Health Sciences, Oncology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MAX dimerization protein 1 (MAD1) is a basic-helix-loop-helix transcription factors that recruits transcription repressor such as HDAC to suppress target genes transcription. It antagonizes to MYC because the promoter binding sites for MYC are usually also serve as the binding sites for MAD1 so they compete for it. However, the mechanism of the switch between MYC and MAD1 in turning on and off of genes' transcription is obscure. In this study, we demonstrated that AKT-mediated MAD1 phosphorylation inhibits MAD1 transcription repression function. The association between MAD1 and its target genes' promoter is reduced after been phosphorylated by AKT; therefore, consequently, allows MYC to occupy the binding site and activates transcription. Mutation of such phosphorylation site abrogates the inhibition from AKT. In addition, functional assays demonstrated that AKT suppressed MAD1-mediated transcription repression of its target genes hTERT and ODC. Cell cycle and cell growth were also been released from inhibition by MAD1 in the presents of AKT. Taken together, our study suggests that MAD1 is a novel substrate of AKT and AKT-mediated MAD1 phosphorylation inhibits MAD1function; therefore, activates MAD1 target genes expression. ^ Furthermore, analysis of protein-protein interaction is indispensable for current molecular biology research, but multiplex protein dynamics in cells is too complicated to be analyzed by using existing biochemical methods. To overcome the disadvantage, we have developed a single molecule level detection system with nanofluidic chip. Single molecule was analyzed based on their fluorescent profile and their profiles were plotted into 2 dimensional time co-incident photon burst diagram (2DTP). From this 2DTP, protein complexes were characterized. These results demonstrate that the nanochannel protein detection system is a promising tool for future molecular biology. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epigenetic silencing of tumor suppressor genes by DNA hypermethylation at promoter regions is a common event in carcinogenesis and tumor progression. Abrogation of methylation and reversal of epigenetic silencing is a very potent way in cancer treatment. However, the reactivation mechanisms are poorly understood. In this study, we first developed a cell line model system named YB5, derived from SW48 cancer cell line, which bears one copy of stably integrated EGFP gene on Chromosome 1p31.1 region. The GFP gene expression is transcriptionally silenced due to the hypermethylated promoter CMV. However, the GFP expression can be restored using demethylating agent 5-aza-2' deoxycytidine (DAC), and detected by FACS and fluorescent microscopy. Using this system, we observed the heterogeneous reactivation induced by DAC treatment. After flow sorting, GFP negative cells exhibited similar level of incomplete demethylation compared to GFP positive cells on repetitive LINE1 element, tumor suppressor genes such as P16, CDH13, and RASSF1a, and CMV promoter as well. However, the local chromatin of CMV-GFP locus altered to an open structure marked by high H3 lysine 9 acetylation and low H3 lysine 27 tri-methylation in GFP positive cells, while the GFP negative cells retained mostly the original repressive marks. Thus, we concluded that DAC induced DNA hypomethylation alone does not directly determine the level of re-expression, and the resetting of the local chromatin structure under hypomethylation environment is required for gene reactivation. Besides, a lentivirus vector-based shRNA screening was performed using the YB5 system. Although it is the rare chance that vector lands in the neighboring region of GFP, we found that the exogenous vector DNA inserted into the upstream region of GFP gene locus led to the promoter demethylation and reactivated the silenced GFP gene. Thus, epigenetic state can be affected by changing of the adjacent nucleic acid sequences. Further, this hypermethylation silenced system was utilized for epigenetic drug screening. We have found that DAC combined with carboplatin would enhance the GFP% yield and increase expression of other tumor suppressor genes than DAC alone, and this synergistic effect may be related to DNA repair process. In summary, these studies reveal that reversing of methylation silencing requires coordinated alterations of DNA methylation, chromatin structure, and local microenvironment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple myeloma (MM) is a debilitating and incurable B-cell malignancy. Previous studies have documented that the hepatocyte growth factor (HGF) plays a role in the pathobiology of MM. The receptor tyrosine kinase MET induced signaling initiates when its ligand HGF binds to the MET receptor. However, the direct importance of MET in MM has not been elucidated. The present work used three different but complementary approaches to reduce MET protein levels or its activity to demonstrate the importance of MET in MM. ^ In the first approach, MET transcript and protein levels were reduced by directly targeting the cellular MET transcripts using shRNA retroviral infection techniques. This direct reduction of MET mRNA leads to a reduction of MET protein levels, which caused an inhibition of growth and induction of cell death. ^ In the second approach, a global transcription inhibitor flavopiridol was used as a potential pharmacological tool to reduce MET levels. MET has a short half-life of 30 min for mRNA and 4 hours for protein; therefore using a RNA pol II inhibitor such as flavopiridol would be a viable option to reduce MET levels. When using flavopiridol in MM cell lines, there was a reduction of MET transcript and protein levels, which was associated with the induction of cell death. ^ Finally in the last strategy, MET kinase activity was suppressed by MP470, a small molecule inhibitor that binds to the ATP binding pocket in the kinase domain. At concentrations where phosphorylation of MET was inhibited there was induction of cell death in MM cell lines and primary cells from patients. In addition, in MM cell lines there was a decrease in phosphorylation of AKT (ser473) and caspase-9 (ser196); downstream of MET, suggesting that the mechanism of action for survival may be through these cascade of events. ^ Overall, this study provides a proof-of-principle that MET is important for the survival of MM cell lines as well as primary plasma cells obtained from patients. Therefore, targeting MET therapeutically may be a possible strategy to treat patients with this debilitating disease of MM. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP-dependent chromatin remodeling has been shown to be critical for transcription and DNA repair. However, the involvement of ATP-dependent chromatin remodeling in DNA replication remains poorly defined. Interestingly, we found that the INO80 chromatin-remodeling complex is directly involved in the DNA damage tolerance pathways activated during DNA replication. DNA damage tolerance is important for genomic stability and is controlled by formation of either mono-ubiquitinated or multi-ubiquitinated PCNA, which respectively induce error prone or error-free replication bypass of the lesions. In addition, homologous recombination (HR) mediated by the Rad51 pathway is also involved in the DNA damage tolerance pathways. ^ We found that INO80 is specifically recruited to replication origins during S phase in a genome-wide fashion. In addition, DNA combing analysis shows INO80 is required for the resumption of replication at stalled forks induced by methyl methane-sulfonate (MMS). Mechanistically, we find that INO80 is required for PCNA ubiquitination as well as for Rad51 mediated processing of replication forks after MMS treatment. Furthermore, chromatin immunoprecipitation at specific ARSs indicates INO80 is necessary for Rad18 and Rad51 recruitment to replication forks after MMS treatment. Moreover, 2D gel analysis shows INO80 is necessary to process Rad51 mediated intermediates at impeded replication forks. ^ In conclusion, our findings establish a novel role of a chromatin-remodeling complex in DNA damage tolerance pathways and suggest that chromatin remodeling is fundamentally important to ensure faithful replication of DNA and genome stability in eukaryotes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic inflammation is an established risk factor in the pathogenesis of many cancers. Pancreatic ductal adenocarcinoma, a malignancy with a particularly dismal prognosis, is no exception. Cyclooxygenase-2, a key enzyme induced by tissue injury, has a critical role in the generation of bioactive lipids known as prostaglandins. COX-2 overexpression is a frequent finding in pancreatic cancer, chronic pancreatitis and pancreatic intraepithelial neoplasias. To explore mechanisms through which chronic inflammation establishes and maintains a protumorigenic environment, we designed a mouse model overexpressing COX-2 in pancreatic parenchyma (BK5.COX-2 mice). We discovered that constitutive expression of COX-2 has a number of important sequelae, including upregulation of additional eicosanoid-generating enzymes and proinflammatory cytokines. Many of these molecular alterations precede the onset of significant histopathological changes. Increased levels of prostaglandins E2, D2, and F2α, 5-, 12-, and 15-hydroxyeiosatetraenoic acid (HETEs) were documented in tumors and pancreata of younger transgenic mice. Using a TaqMan™ Mouse Immune Panel, we detected elevated mRNAs for a number of proinflammatory cytokines (e.g., TNFα, IL-1β, IL-6). ^ Histological examination revealed early changes in the pancreas with similarities to human chronic pancreatitis, including loss of acinar cells, appearance of metaplastic ducts, and increased deposition of stroma. As the lesions progress, features typical of dysplastic and neoplastic cells emerged within the metaplastic ductal complexes, including cellular and nuclear atypia, crowding of cells, and loss of normal tissue architecture. The amount of fibroinflammatory stroma increased considerably; numerous small vessels were evident. A number of immunocytes from both the myeloid and lymphoid lineages were identified in transgenic pancreata. Neutrophils were the earliest to infiltrate, followed shortly by macrophages and mast cells. B and T cells generally began to appear by 8–12 weeks, and organized aggregates of lymphoid cells were often found in advanced lesions. ^ We tested the efficacy of several chemopreventive agents in this model, including celecoxib, a COX-2 selective inhibitor, pentoxifylline, a cytokine inhibitor, curcumin, a polyphenol with antioxidant and anti-inflammatory properties, and GW2974, a dual EGFR/ErbB2 inhibitor. Effects on lesion development were modest in the GW2974 and pentoxifylline treated groups, but significant prevention effects were observed with curcumin and celecoxib. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain metastasis is resistant to chemotherapy while the leaky blood-brain-barrier in brain metastasis can not be the underlying reason. Metastatic tumor cells (“seed”) exploit the host microenvironment (“soil”) for survival advantages. Astrocytes which maintain the homeostasis of the brain microenvironment become reactive subsequent to brain damages and protect neurons from various injuries. We observed reactive astrocytes surrounding and infiltrating into brain metastasis in both clinical specimen and experimental animal model, thus raising a possibility that reactive astrocytes may protect tumor cells from cytotoxic chemotherapeutic drugs. ^ To test this hypothesis, we first generated an immortalized astrocyte cell line from H-2Kb-tsA58 mice. The immortal mouse astrocytes expressed specific markers including GFAP. Scanning electron microscopy demonstrated that astrocytes formed direct physical contact with tumor cells. Moreover, the expression of GFAP by astrocytes was up-regulated subsequent to co-culture with tumor cells, indicating that the co-culture of astrocytes and tumor cells may serve as a model to recapitulate the pathophysiological situation of brain metastasis. ^ In co-culture, astrocytes dramatically reduced apoptosis of tumor cells produced by various chemotherapeutic drugs. This protection effect was not because of culturing cells from different species since mouse fibroblasts did not protect tumor cells from chemotherapy. Furthermore, the protection by astrocytes was completely dependent on a physical contact. ^ Gap junctional communication (GJC) served as this physical contact. Tumor cells and astrocytes both expressed the major component of gap junctional channel—connexin 43 and formed functional GJC as evidenced by the “dye transfer” assay. The blockage of GJC between tumor cells and astrocytes by either specific chemical blocker carbenoxolone (CBX) or by genetically knocking down connexin 43 on astrocytes reversed the chemo-protection. ^ Calcium was the signal molecule transmitted through GJC that rescued tumor cells from chemotherapy. Accumulation of cytoplasmic calcium preceded the progress of apoptosis in tumor cells treated with chemotherapeutic drugs. Furthermore, chelation of accumulated cytoplasmic calcium inhibited the apoptosis of tumor cells treated with chemotherapeutic drugs. Most importantly, astrocytes could “shunt” the accumulated cytoplasmic calcium from tumor cells (treated with chemotherapeutic drug) through GJC. We also used gene expression micro-array to investigate global molecular consequence of tumor cells forming GJC with astrocytes. The data demonstrated that astrocytes (but not fibroblasts), through GJC, up-regulated the expressions of several well known survival genes in tumor cells. ^ In summary, this dissertation provides a novel mechanism underlying the resistance of brain metastasis to chemotherapy, which is due to protection by astrocytes through GJC. Interference with the GJC between astrocytes and tumor cells holds great promise in sensitizing brain metastasis to chemotherapy and improving the prognosis for patients with brain metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Medulloblastoma is a type of brain cancer that accounts for approximately 7-8% of all intracranial tumors and 20-30% of pediatric brain tumors. It is the most common type of malignant brain tumor in childhood. It was reported that majority of survivors with medulloblastoma have social problems, endocrine deficits, and neurological complications. Furthermore, all had significant deficits in neurocognitive functioning. Glutathione S-transferases belong to a family of isoenzymes that catalyze the glutathione conjugation of a variety of electrophilic compounds. ^ Objective. We aimed to determine whether the development of neurocognitive impairment is associated with GST polymorphisms among children and adolescents diagnosed with medulloblastoma (MB) after radiation therapy. ^ Methods. A pilot study composing of 16 children and adolescents diagnosed with MB at Texas Children's Cancer Center was conducted. The t-test was used to determine if the GST polymorphisms were related to neurocognitive impairment and logistic regression was performed to explore association between GST polymorphisms and gender, age at diagnosis, race/ethnicity, and risk group. ^ Results. An association was observed between GSTT1 polymorphism and cognitive impairment one year after radiation and GSTM1 polymorphism two years after radiation. It was observed that patients with GSTT1 null genotype have lower performance IQ (p=0.03) and full scale IQ (p=0.02) one year after radiation and patients with GSTM1 null genotype have lower verbal IQ (p=0.02) two years after radiation. Patients under age 8 have a statistically non-significant higher risk of having not null genotypes compared to those older than age 8 (OR= 7.5, 95%CI: 0.62-90.65 and OR= 2.63, 95%CI: 0.30-23.00 for GSTT1 and GSTM1 respectively). ^ Conclusion. There was a significant association between GSTT1 polymorphism and cognitive impairment one year after radiation and between GSTM1 polymorphism and cognitive impairment two years after radiation. Further large scale studies may be needed to confirm this finding and to examine the underlying mechanism of neurocognitive impairments after treatment of medulloblastoma patients.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms of endometrail cancer invasion are poorly understood. S100A4, a member of the S100 Ca2+-binding protein family, was identified by oligonucleotide microarray qRT-PCR, and IHC, to be highly overexpressed in invasive endometrial carcinomas compared to non-invasive tumors. HEC-1A endometrial cancer cells transfected with S100A4 siRNA had undetectable S100A4 protein, decreased migration and invasion. The mechanism of S100A4 upregulation in endometrial cancer remains unclear. Methylation of the S100A4 gene was detected in benign endometrial glands and grade 1 tumors with no S100A4 expression. In contrast, grade 3 endometrioid tumors with high S100A4 expression showed no methylation of the gene. 5-Aza-2'-deoxycytidine, an inhibitor of DNA methyltransferase, induced the expression of S100A4 in the less invasive EC cell line, KLE, in which the S100A4 gene is hypermethylated and minimally expressed. S100A4 was induced during TGF-β1-triggered cell scattering in HEC-1A cells, in which S100A4 was demethylated. Transfection of HEC-1A cells with S100A4 siRNA significantly reduced the effect of TGF-β1 on basal migration and invasion. Our preliminary data suggested that this upregulation was mediated by the transcription factor Snail. One Snail binding consensus site was found in the region where DNA methylation was closely correlated with S100A4 gene expression. Chromatin immunoprecipitation assay confirmed the binding of Snail to this consensus site in HEC-1A cells. In SPEC2 endometrial cancer cells, loss of Snail leads to repressed S100A4 gene expression. Similar to S100A4, Snail was overexpressed in aggressive endometrial tumors. Our study suggested that the S100A4 gene was demethylated and further upregulated by the TGF-β1 and Snail pathway in invasive endometrial cancer. S100A4 could potentially serve as a good molecular marker for invasiveness and a target for therapeutic intervention for advanced endometrial cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most diagnosed non-cutaneous malignancy and the second leading cause of cancer mortality among United States males. Major racial disparities in incidence, survival, as well as treatment persist. The mortality is three times higher among African Americans (AAs) compared with Caucasians. Androgen carcinogenesis has been persistently implicated but results are inconsistent; and hormone manipulation has been the main stay of treatment for metastatic disease, supportive of the androgen carcinogenesis. The survival disadvantage of AAs has been attributed to the differences in socioeconomic factors (SES), tumor stage, and treatment. We hypostasized that HT prolongs survival in CaP and that the racial disparities in survival is influenced by variation in HT and primary therapies as well as SES. To address these overall hypothesis, we first utilized a random-effect meta-analytic design to examine evidence from randomized trials on the efficacy of androgen deprivation therapy in localized and metastatic disease, and assessed, using Cox proportional hazards models, the effectiveness of HT in prolonging survival in a large community-based cohort of older males diagnosed with local/regional CaP. Further we examined the role of HT and primary therapies on the racial disparities in CaP survival. The results indicated that adjuvant HT compared with standard care alone is efficacious in improving overall survival, whereas HT has no significant benefit in the real world experience in increasing the overall survival of older males in the community treated for local/regional disease. Further, racial differences in survival persist and were explained to some extent by the differences in the primary therapies (radical prostatectomy, radiation and watchful waiting) and largely by SES. Therefore, given the increased used of hormonal therapy and the cost-effectiveness today, more RCTs are needed to assess whether or not survival prolongation translates to improved quality of life, and to answer the research question on whether or not the decreased use of radical prostatectomy by AAs is driven by the Clinicians bias or AAs's preference of conservative therapy and to encourage AAs to seek curative therapies, thus narrowing to some degree the persistent mortality disparities between AAs and Caucasians. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. One facet of cancer care that often goes ignored is comorbidities, or diseases that exist in concert with cancer. Comorbid conditions may affect survival by influencing treatment decisions and prognosis. The purpose of this secondary data analysis was to identify whether a history of cardiovascular comorbidities among ovarian cancer patients influenced survival time at the University of Texas M. D. Anderson Cancer Center. The parent study, Project Peace, has a longitudinal design with an embedded randomized efficacy study which seeks to improve detection of depressive disorders in ovarian, peritoneal, and fallopian tube cancers. ^ Methods. Survival time was calculated for the 249 ovarian cancer patients abstracted by Project Peace staff. Cardiovascular comorbidities were documented as present, based upon information from medical records in addition to self reported comorbidities in a baseline study questionnaire. Kaplan-Meier survival curves were used to compare survival time among patients with a presence or absence of particular cardiovascular comorbidities. Cox Regression proportional models accounted for multivariable factors such as age, staging, family history of cardiovascular comorbidities, and treatment. ^ Results. Among our patient population, there was a statistically significant relationship between shorter survival time and a history of thrombosis, pericardial disease/tamponade, or COPD/pulmonary hypertension. Ovarian cancer patients with a history of thrombosis lived approximately half as long as patients without thrombosis (58.06 months vs. 121.55 months; p=.001). In addition, patients who suffered from pericardial disease/tamponade had poorer survival than those without a history of pericardial disease/tamponade (48 months vs. 80.07 months; p=.002). Ovarian cancer patients with a history of COPD or pulmonary hypertension had a median survival of 60.2 months, while the median survival for patients without these comorbidities was 80.2 months (p=.014). ^ Conclusion. Especially because of its relatively lower survival rate, greater emphasis needs to be placed on the potential influence of cardiovascular comorbid conditions in ovarian cancer.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retrospective cohort study examined the association between the presence of comorbidities and breast cancer disease-free survival rates among racial/ethnic groups. The study population consisted of 2389 women with stage I and II invasive breast cancer who were diagnosed and treated at the M.D. Anderson Cancer Center between 1985 and 2000. It has been suggested that as the number of comorbidities increases, breast cancer mortality increases. It is known that African Americans and Hispanics are considered to be at a higher risk for comorbid conditions such as hypertension and diabetes compared to Caucasian women (23) (10). When compared to Caucasian women, African American women also have a higher breast cancer mortality rate (1). As a result, the study also examined whether comorbid conditions contribute to racial differences in breast cancer disease-free survival. Among the study population, 24% suffered from breast cancer recurrence, 6% died from breast cancer and 24% died from all causes. The mean age was 56 with 41% of the population being women between the ages of 40-55. One or more comorbidities were reported in 84 (36%) African Americans (OR 1.57; 95% CI 1.19-2.10), 58 (31%) Hispanics (OR 1.25; 95% CI 0.90-1.74) compared to the reference group of 531 (27%) Caucasians. Additionally, African American women were significantly more likely to suffer from either a breast cancer recurrence or breast cancer death (OR 1.5; 95% CI 0.70-1.41) when compared to Caucasian women. Multivariate analysis found hypertension (HR 1.22; 95% CI 0.99-1.49; p<0.05) to be statistically significant and a potential prognostic tool for disease-free survival with African American women (OR 2.96; 95% 2.25-3.90) more likely to suffer from hypertension when compared to Caucasian women. When compared to Caucasian women, Hispanics were also more likely to suffer from hypertension (OR 1.33; 95% CI 0.96-1.83). This suggests that comorbid conditions like hypertension could account for the racial disparities that exist when comparing breast cancer survival rates. Future studies should investigate this relationship further.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Cancer is the second most common cause of death in the USA (2). Studies have shown a coexistence of cancer and hypogonadism (9,31,13). The majority of patients with cancer develop cachexia, which cannot be solely explained by anorexia seen in these patients. Testosterone is a male sex hormone which is known to increase muscle mass and strength, maintain cancellous bone mass, and increase cortical bone mass, in addition to improving libido, sexual desire, and fantasy (14). If a high prevalence of hypogonadism is detected in male cancer patients, and a significant difference exists in testosterone levels in cancer patients with cachexia versus those without cachexia, testosterone may be administered in future randomized trials to help alleviate cachexia. Study group and design The study group consisted of male cancer patients and non-cancer controls aged between 40 and 70 years. The primary study design was cross-sectional with a sample size of 135. The present data analysis is done on a subset convenience sample of 72 patients recruited between November 2006 and January 2010. ^ Methods. Patients aged 40-70 years with or without a diagnosis of cancer were recruited into the study. All patients with a BMI over 35, significant edema, non-melanomatous skin cancer, current alcohol or illicit drug abuse, concomitant usage of medications interfering with gonadal axis, and anabolic agents, patients on tube feeds or parenteral nutrition within 3 months prior to enrollment were excluded from the study. The study was approved by the Institutional Review Board of Baylor College of Medicine and is being conducted at the Michael E. DeBakey Veterans Affairs Medical Center at Houston. My thesis is a pilot data analysis that employs a smaller subset convenience sample of 72 patients determined by using the data available for the 72 patients (of the intended sample of 135 patients) recruited between November 2006 and January 2010. The primary aim of this analysis is to compare the proportion of patients with hypogonadism in the male cancer and non-cancer control groups, and to evaluate if a significant difference exists with respect to testosterone levels in male cancer patients with cachexia versus those without cachexia. The procedures of the study relevant to the current data analysis included blood collection to measure levels of testosterone and measurement of body weight to categorize cancer patients into cancer cachexia and cancer non-cachexia sub-groups. ^ Results. After logarithmic transformation of data of cancer and control groups, the unpaired t test with unequal variances was done. The proportion of patients with hypogonadism in the male cancer and non-cancer control groups was 47.5% and 22.7% with a Pearson chi2 statistic of 1.6036 and a p value of 0.205. Comparing the mean calculated Bioavailable testosterone in male cancer patients and non-cancer controls resulted in a t statistic of 21.83 and a p value less than 0.001. When the cancer group alone was taken, the mean free testosterone, calculated bioavailable testosterone and total testosterone levels in the cancer non-cachexia sub-group were 3.93, 5.09, 103.51 respectively and in the cancer cachexia sub-group were 3.58, 4.17, 84.08 respectively. The unpaired t test with equal variances showed that the two sub-groups had p values of 0.2015, 0.1842, and 0.4894 with respect to calculated bioavailable testosterone, free testosterone, and total testosterone respectively. ^ Conclusions. The small sample size of this exploratory study, resulting in a small power, does not allow us to draw definitive conclusions. For the given sub-sample, the proportion of patients with hypogonadism in the cancer group was not significantly different from that of patients with hypogonadism in the control group. Inferences on prevalence of hypogonadism in male cancer patients could not be made in this paper as the sub-sample is small and therefore not representative of the general population. However, there was a statistically significant difference in calculated Bioavailable testosterone levels in male cancer patients versus non-cancer controls. Analysis of cachectic and non-cachectic patients within the male cancer group showed no significant difference in testosterone levels (total, free, and calculated bioavailable testosterone) between both sub-groups. However, to re-iterate, this study is exploratory and the results may change once the complete dataset is obtained and analyzed. It however serves as a good template to guide further research and analysis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. Triple Negative Breast Cancer (TNBC) lack expression of estrogen receptors (ER), progesterone receptors (PR), and absence of Her2 gene amplification. Current literature has identified TNBC and over-expression of cyclo-oxygenase-2 (COX-2) protein in primary breast cancer to be independent markers of poor prognosis in terms of overall and distant disease free survival. The purpose of this study was to compare COX-2 over-expression in TNBC patients to those patients who expressed one or more of the three tumor markers (i.e. ER, and/or PR, and/or Her2).^ Methods. Using a secondary data analysis, a cross-sectional design was implemented to examine the association of interest. Data collected from two ongoing protocols titled "LAB04-0657: a model for COX-2 mediated bone metastasis (Specific aim 3)" and "LAB04-0698: correlation of circulating tumor cells and COX-2 expression in primary breast cancer metastasis" was used for analysis. A sample of 125 female patients was analyzed using Chi-square tests and logistic regression models. ^ Results. COX-2 over-expression was present in 33% (41/125) and 28% (35/124) patients were identified as having TNBC. TNBC status was associated with elevated COX-2 expression (OR= 3.34; 95% CI= 1.40–8.22) and high tumor grade (OR= 4.09; 95% CI= 1.58–10.82). In a multivariable analysis, TNBC status was an important predictor of COX-2 expression after adjusting for age, menopausal status, BMI, and lymph node status (OR= 3.31; 95% CI: 1.26–8.67; p=0.01).^ Conclusion. TNBC is associated with COX-2 expression—a known marker of poor prognosis in patients with operable breast cancer. Replication of these results in a study with a larger sample size, or a future randomized clinical trial demonstrating an improved prognosis with COX-2 suppression in these patients would support this hypothesis.^