896 resultados para Hand posture recognition
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática
Resumo:
Dissertação para obtenção do Grau de Doutor em Biologia, Especialidade de Biologia Molecular
Resumo:
BACKGROUND: Hand, foot, and mouth syndrome (HFMS) is a common acute illness. It is characterized by mild clinical symptoms including fever, blisters, and sores in the mouth and on the palms and soles following a 3- to 7-day incubation period. This syndrome is rarely seen in adults. CASE PRESENTATION: A 35-year-old male Caucasian patient had a history of multiple episodes of acute pharyngitis, hypertension, hypercholesterolemia, and occasional abdominal pain. He presented with polyarthralgia in the knees and hands and odynophagia, followed by fever, oral mucosal aphthous lesions, and vesicles on the palms and soles. Three weeks after presentation, he was admitted to the emergency room with acute myocarditis. The in-hospital evaluation revealed positive serology for coxsackie A9 (1:160), positive anti-transglutaminase and anti-gliadin antibodies, normal immunoglobulins, and human immunodeficiency virus negativity. CONCLUSION: We herein describe a case of HFMS that was associated with coxsackie A9 infection complicated by acute myocarditis. Although an association between celiac disease and HFMS has not been described, this patient's immunologic disruption could have favored the development of infection and ultimately HFMS.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Software for pattern recognition of the larvae of mosquitoes Aedes aegypti and Aedes albopictus, biological vectors of dengue and yellow fever, has been developed. Rapid field identification of larva using a digital camera linked to a laptop computer equipped with this software may greatly help prevention campaigns.
Resumo:
Human Activity Recognition systems require objective and reliable methods that can be used in the daily routine and must offer consistent results according with the performed activities. These systems are under development and offer objective and personalized support for several applications such as the healthcare area. This thesis aims to create a framework for human activities recognition based on accelerometry signals. Some new features and techniques inspired in the audio recognition methodology are introduced in this work, namely Log Scale Power Bandwidth and the Markov Models application. The Forward Feature Selection was adopted as the feature selection algorithm in order to improve the clustering performances and limit the computational demands. This method selects the most suitable set of features for activities recognition in accelerometry from a 423th dimensional feature vector. Several Machine Learning algorithms were applied to the used accelerometry databases – FCHA and PAMAP databases - and these showed promising results in activities recognition. The developed algorithm set constitutes a mighty contribution for the development of reliable evaluation methods of movement disorders for diagnosis and treatment applications.
Resumo:
Human-Computer Interaction have been one of the main focus of the technological community, specially the Natural User Interfaces (NUI) field of research as, since the launch of the Kinect Sensor, the goal to achieve fully natural interfaces just got a lot closer to reality. Taking advantage of this conditions the following research work proposes to compute the hand skeleton in order to recognize Sign Language Shapes. The proposed solution uses the Kinect Sensor to achieve a good segmentation and image analysis algorithms to extend the skeleton from the extraction of high-level features. In order to recognize complex hand shapes the current research work proposes the redefinition of the hand contour making it immutable to translation, rotation and scaling operations, and a set of tools to achieve a good recognition. The validation of the proposed solution extended the Kinects Software Development Kit to allow the developer to access the new set of inferred points and created a template-matching based platform that uses the contour to define the hand shape, this prototype was tested in a set of predefined conditions and showed to have a good success ration and has proven to be eligible for real-time scenarios.
Resumo:
Public Display Systems (PDS) increasingly have a greater presence in our cities. These systems provide information and advertising specifically tailored to audiences in spaces such as airports, train stations, and shopping centers. A large number of public displays are also being deployed for entertainment reasons. Sometimes designing and prototyping PDS come to be a laborious, complex and a costly task. This dissertation focuses on the design and evaluation of PDS at early development phases with the aim of facilitating low-effort, rapid design and the evaluation of interactive PDS. This study focuses on the IPED Toolkit. This tool proposes the design, prototype, and evaluation of public display systems, replicating real-world scenes in the lab. This research aims at identifying benefits and drawbacks on the use of different means to place overlays/virtual displays above a panoramic video footage, recorded at real-world locations. The means of interaction studied in this work are on the one hand the keyboard and mouse, and on the other hand the tablet with two different techniques of use. To carry out this study, an android application has been developed whose function is to allow users to interact with the IPED Toolkit using the tablet. Additionally, the toolkit has been modified and adapted to tablets by using different web technologies. Finally the users study makes a comparison about the different means of interaction.
Resumo:
As razões justificativas deste apontamento sobre a presença e o papel históricos do arco, enquanto instrumento bélico, na Baixa Idade Média inglesa decorrem da inclusão do Professor Hélio Osvaldo Alves no júri de doutoramento da dissertação Príncipe dos Ladrões: Robin Hood na Cultura Inglesa (c.1377-1837), por nós apresentada à Faculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa em Julho de 1996. Embora nessa altura conhecêssemos já o fascínio do Professor Hélio Alves por figuras, movimentos e projectos ‘marginais’ ou ‘marginalizados’ (fascínio que, diga-se de passagem, nos habituámos a atribuir também à sua transbordante humanidade, à capacidade alquímica de fundir inconformismo e compaixão e ao exercício solidário --- e às vezes decerto solitário --- do direito à indignação moral e cívica), foi ainda assim com surpresa que deparámos, numa das suas últimas obras e a propósito dos Luditas, com “Robin Hood revisitado” (Alves, 2002: 77-96).
Resumo:
Bradykinin is a peptide of the kinin group, involved in a number of receptor-mediated physiological actions, including inflammation and vasodilation, as well as neuromodulation, neuroprotection and promotion of neurogenesis. Bradykinin is the main ligand of the B2 receptor- the main kinin receptor- which is involved in the cardiac and renal protective effects of kinins in diseases. Antibodies have been considered for a long time as promising therapeutic agents in various fields, especially cancer-related ones. Aptamers, on the other hand, have proven to be an excellent alterative, since they have similar properties to those of monoclonal antibodies, such a high-specificity of recognition and high-affinity binding. Plus, they are developed using in vitro selection procedures and can be reproduced by enzymatic reactions. SELEX is a powerful tool for the development of both DNA and RNA aptamers. The main goal of this project was to design a method to select aptamers against bradykinin using capillary electrophoresis alongside the SELEX technique. The selection was done by comparing the aptamers’ (ssDNA-target complex) electrophoretic mobility with that of the ssDNA and the target, which allowed us to define an appropriate collection window that took into consideration the analytes’ detection time, thus enabling the collection of the desired oligonucleotides. After two selection rounds, the collected pool was sequenced, the affinity was measured and the aptamers’ secondary structure was predicted. We concluded that with only two selection cycles, the original DNA library’s bulk affinity grew around 0.4%. The structural characterization of the aptamers, performed with the aid of the Mfold software, revealed that there are many repetitive motifs amongst them, indicating that the selection process was successful. We have obtained 16 sequences of candidate aptamers as bradykinin ligands of similar sequences and secondary structures whose biological activity should be analyzed after synthesis; mainly in regard to their role as bradykinin inhibitors.
Resumo:
The authors analysed a series of 22 patients undergoing surgical correction of congenital hand syndactyly by the rectangular flap technique. Using our evaluation method, we found that good functional and aesthetic results were obtained in 77.3% of the patients, with a complication rate of 13.6%. We concluded that the rectangular flap technique has a simple design, is easily reproducible by in-training staff, has good results, and can be applied on the majority of the syndactyly cases.
Resumo:
Historically, the dorsal arterial system of the hand received less attention than the palmar system. The studies concerning dorsal arterial anatomy present some controversies regarding the origin and presence of the dorsal metacarpal artery branches. Knowledge of the anatomy of dorsal metacarpal arteries is especially applied in the surgical planning for flaps taken from the dorsum of the hand. The purpose of this study is to analyze the arterial anatomy of the dorsum of the hand, compare our observations with those of previous studies from the literature, and therefore to define parameters for surgical planning for flaps supplied by the dorsal metacarpal arteries. METHOD: Twenty-six dissections were performed at the dorsum of the right hand of 26 cadavers by making a distal-based U-shaped incision. After catheterization of the radial artery at the wrist level, a plastic dye solution with low viscosity and quick solidification was injected to allow adequate exposure of even small vessels. The radial artery and its branches, the dorsal arterial arch, the dorsal metacarpal arteries, the distal and proximal communicating branches of the palmar system, and the distal cutaneous branches were carefully dissected and identified. RESULTS: The distal cutaneous branches originating from the dorsal metacarpal arteries were observed in all cases; these were located an average of 1.2 cm proximal from the metacarpophalangeal joint. The first dorsal metacarpal artery presented in 3 different patterns regarding its course: fascial, subfascial, and mixed. The branching pattern of the radial artery at the first intermetacarpal space was its division into 3 branches. We observed the presence of the dorsal arterial arch arising from the radial artery in 100% of the cases. The distance between the dorsal arterial arch and the branching point of the radial artery was an average of 2 cm. The first and second dorsal metacarpal arteries were visualized in all cases. The third and fourth dorsal metacarpal arteries were visualized in 96.2% and 92.3% of cases, respectively. There was proximal and distal communication between the dorsal arterial arch and the palmar system through the communicating branches contributing to the dorsal metacarpal artery formation. CONCLUSION: At the dorsum of the hand there is a rich arterial net that anastomoses with the palmar arterial system. This anatomical characteristic allows the utilization of the dorsal aspect of the hand as potential donor site for cutaneous flaps.
Resumo:
Several studies have shown that people with disabilities benefit substantially from access to a means of independent mobility and assistive technology. Researchers are using technology originally developed for mobile robots to create easier to use wheelchairs. With this kind of technology people with disabilities can gain a degree of independence in performing daily life activities. In this work a computer vision system is presented, able to drive a wheelchair with a minimum number of finger commands. The user hand is detected and segmented with the use of a kinect camera, and fingertips are extracted from depth information, and used as wheelchair commands.