961 resultados para HYDROGEN-BONDED NETWORKS
Resumo:
In the title compound, Zn(C5H7O2)(2)(C5H5N)], the metal atom has square-pyramidal coordination geometry with the basal plane defined by the four O atoms of the chelating acetylacetonate ligands and with the axial position occupied by the pyridine N atom. The crystal packing is characterized by a C-H...O hydrogen-bonded ribbon structure approximately parallel to 10
Resumo:
A range of novel chiral tellurium compounds having an azomethine functional group in the position ortho to tellurium has been synthesized by the reaction of the tellurium-containing aldehydes bis(o-formylphenyl) telluride (1) and o-(butyltelluro)benzaldehyde (4) with chiral amines (R)-(+)-(1-pheylethylamine) and (1R,2S)-(-)-norephedrine, respectively. The precursor aldehydes were prepared by using a reported procedure with slight but advantageous modifications. During the preparation of o-(butyltelluro)benzaldehyde, interesting side products, namely bis(o-formylphenyl) ditelluride ethylene acetal 5, bis(o-formylphenyl) tritelluride (6), and bis(o-formylphenyl) ditelluride (7) were isolated in moderate yields. The ditelluride 7 has been characterized by single-crystal X-ray diffraction studies. The liquid Schiff bases 10 and 11 were further characterized by derivatizing with liquid bromine. The title compound was obtained in excellent yield by reacting the Schiff base 11 with elemental bromine. Detailed NMR studies indicated the presence of a rigid environment for the hydroxyl group. Single-crystal X-ray determinations of the crystals obtained from the different batches indicated. the presence of the two pseudopolymorphic forms 13a and 13b, respectively. In the case of 13a there is one molecule of CH3CN as solvent of crystallization, whereas in 13b half a molecule of CH3CN per molecule of the title compound lies along the 2-fold axis. In 13a the hydroxyl hydrogen is hydrogen-bonded to the nitrogen of the solvent molecule, whereas in 13b it is hydrogen-bonded to the bromine of the neighboring molecule.
Resumo:
The crystal structure of the saccharide-free form of the basic form of winged-bean agglutinin (WBAI) has been solved by the molecular-replacement method and refined at 2.3 Angstrom resolution The final R factor is 19.74b for all data in the resolution range 8.0-2.3 Angstrom. The asymmetric unit contains two half-dimers, each located on a crystallographic twofold axis. The structure of the saccharide-free form is compared with that of the complex of WBAI wi th methyl-alpha-D-galactoside. The complex is composed of two dimers in the asymmetric unit. The intersubunit interactions in the dimer are nearly identical in the two structures The binding site of the saccharide-free structure contains three ordered water molecules at positions similar to those of the hydroxyl groups of the carbohydrate which an hydrogen bonded to the protein. Superposition of the saccharide-binding sites of the two structures shows that the major changes involve expulsion of these ordered water molecules and a shift of about 0.6 Angstrom of the main-chain atoms of the variable loop.
Resumo:
Crystal structures of the active-site mutants D99A and H48Q and the calcium-loop mutant D49E of bovine phospholipase A(2) have been determined at around 1.9 Angstrom resolution. The D99A mutant is isomorphous to the orthorhombic recombinant enzyme, space group P2(1)2(1)2(1), The H48Q and the calcium-loop mutant D49E are isomorphous to the trigonal recombinant enzyme, space group P3(1)21, The two active-site mutants show no major structural perturbations. The structural water is absent in D99A and, therefore, the hydrogen-bonding scheme is changed. In H48Q, the catalytic water is present and hydrogen bonded to Gln48 N, but the second water found in native His48 is absent. In the calcium-loop mutant D49E, the two water molecules forming the pentagonal bipyramid around calcium are absent and only one O atom of the Glu49 carboxylate group is coordinated to calcium, resulting in only four ligands.
Resumo:
Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.
Resumo:
A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the ``water wire'' and ``peptide nanotube'' is electrostatic in origin. An energy difference of 16 KJmol(-1) is estimated for the distinct orientations of the water wire dipole with respect to the macrodipole of the peptide nanotube. The structural model suggests that Grotthuss type proton conduction may, through constricted hydrophobic channels, be facilitated by concerted, rotational reorientation of water molecules.
Identity, energetics, dynamics and environment of interfacial water molecules in a micellar solution
Resumo:
The structure and energetics of interfacial water molecules in the aqueous micelle of cesium perfluorooctanoate have been investigated, using large-scale atomistic molecular dynamics simulations, with the primary objective of classifying them. The simulations show that the water molecules at the interface fall into two broad classes: bound and free, present in a ratio of 9:1. The bound water molecules can be further categorized on the basis of the number of hydrogen bonds (one or two) that they form with the surfactant headgroups. The hydrogen bonds of the doubly hydrogen-bonded species are found to be, on the average, slightly weaker than those in the singly bonded species. The environment around interfacial water molecules is more ordered than that in the bulk. The surface water molecules have substantially lower potential energy, because of interaction with the micelle. In particular, both forms of bound water have energies that are lower by �2.5-4.0 kcal/ mol. Entropy is found to play an important role in determining the relative concentration of the species.
Resumo:
The crystal structure of 3,4,5-trichlorophenol contains hydrogen bonded domains that occur respectively in the structures of 4-chlorophenol and 3,5-dichlorophenol. Such modularity is also seen in 2,3,4-trichlorophenol. These structures, and those of the six isomeric dichlorophenols, illustrate the importance of halogen bonding as a structure determining interaction.
Resumo:
The title compound, C(15)H(15)F(3)N(2)O(2)S, adopts a conformation with an intramolecular C-H center dot center dot center dot pi interaction. The dihedral angles between the planes of the 4-(trifluoromethyl) phenyl and ester groups with the plane of the six-membered tetrahydropyrimidine ring are 81.8 (1) and 16.0 (1)degrees, respectively. In the crystal structure, intermolecular N-H center dot center dot center dot S hydrogen bonds link pairs of molecules into dimers and N-H center dot center dot center dot O interactions generate hydrogen-bonded molecular chains along the crystallographic a axis.
Resumo:
In this study, we present the spontaneous self-assembly of designed simplest aromatic cyclic dipeptides of (L-Phg-L-Phg) and (D-Phg-L-Phg) to form highly stable two-dimensional (2D) nano- and mesosheets with large lateral surface area. Various microscopy data revealed that the morphology of 2D mesosheets resembles the hierarchical natural materials with layered structure. Solution and solid-state NMR studies on cyclo(L-Phg-L-Phg) revealed the presence of strong (N-H-O) hydrogen-bonded molecular chains supported by aromatic pi-pi interactions to form 2D mesosheets. Interestingly, cyclo(D-Phg-L-Phg) self-assembles to form single-crystalline as well as non-crystalline 2D rhomboid sheets with large lateral dimension. X-ray diffraction analysis revealed the stacking of (N-H-O) hydrogen-bonded molecular layers along c-axis supported by aromatic pi-pi interactions. The thermogravimetric analysis shows two transitions with overall high thermal stability attributed to layered hierarchy found in 2D mesosheets.
Resumo:
Dielectric dispersion and NMRD experiments have revealed that a significant fraction of water molecules in the hydration shell of various proteins do not exhibit any slowing down of dynamics. This is usually attributed to the presence of the hydrophobic residues (HBR) on the surface, although HBRs alone cannot account for the large amplitude of the fast component. Solvation dynamics experiments and also computer simulation studies, on the other hand, repeatedly observed the presence of a non-negligible slow component. Here we show, by considering three well-known proteins (lysozyme, myoglobin and adelynate kinase), that the fast component arises partly from the response of those water molecules that are hydrogen bonded with the backbone oxygen (BBO) atoms. These are structurally and energetically less stable than those with the side chain oxygen (SCO) atoms. In addition, the electrostatic interaction energy distribution (EIED) of individual water molecules (hydrogen bonded to SCO) with side chain oxygen atoms shows a surprising two peak character with the lower energy peak almost coincident with the energy distribution of water hydrogen bonded to backbone oxygen atoms (BBO). This two peak contribution appears to be quite general as we find it for lysozyme, myoglobin and adenylate kinase (ADK). The sharp peak of EIED at small energy (at less than 2 k(B)T) for the BBO atoms, together with the first peak of EIED of SCO and the HBRs on the protein surface, explain why a large fraction (similar to 80%) of water in the protein hydration layer remains almost as mobile as bulk water Significant slowness arises only from the hydrogen bonds that populate the second peak of EIED at larger energy (at about 4 k(B)T). Thus, if we consider hydrogen bond interaction alone, only 15-20% of water molecules in the protein hydration layer can exhibit slow dynamics, resulting in an average relaxation time of about 5-10 ps. The latter estimate assumes a time constant of 20-100 ps for the slow component. Interestingly, relaxation of water molecules hydrogen bonded to back bone oxygen exhibit an initial component faster than the bulk, suggesting that hydrogen bonding of these water molecules remains frustrated. This explanation of the heterogeneous and non-exponential dynamics of water in the hydration layer is quantitatively consistent with all the available experimental results, and provides unification among diverse features.
Resumo:
The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multicomponent crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2 : 1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N-H center dot center dot center dot N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.
Resumo:
The effect of gem-dialkyl substituents on the backbone conformations of beta-amino acid residues in peptides has been investigated by using four model peptides: Boc-Xxx-beta 2,2Ac6c(1-aminomethylcyclohexanecarboxylic acid)-NHMe (Xxx=Leu (1), Phe (2); Boc=tert-butyloxycarbonyl) and Boc-Xxx-beta 3,3Ac6c(1-aminocyclohexaneacetic acid)-NHMe (Xxx=Leu (3), Phe (4)). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc-Leu-beta 2,2Ac6c-NHMe (1) established a C11 hydrogen-bonded turn in the a beta-hybrid sequence. The observed torsion angles (a(similar to-60 degrees, similar to-30 degrees), beta(similar to-90 degrees, similar to 60 degrees, similar to-90 degrees)) corresponded to a C11 helical turn, which was a backbone-expanded analogue of the type III beta turn in aa sequences. The crystal structure of the peptide Boc-Phe-beta 3,3Ac6c-NHMe (4) established a C11 hydrogen-bonded turn with distinctly different backbone torsion angles (a(similar to-60 degrees, similar to 120 degrees), beta(similar to 60 degrees, ?60 degrees, similar to-60 degrees)), which corresponded to a backbone-expanded analogue of the type II beta turn observed in aa sequences. In peptide 4, the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these a beta-hybrid sequences.
Resumo:
An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.
Resumo:
The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448-11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.