862 resultados para HIGH-INTENSITY LASER
Resumo:
The energy transfer by stimulated Brillouin backscatter from a long pump pulse (15 ps) to a short seed pulse (1 ps)has been investigated in a proof-of-principle demonstration experiment. The two pulses were both amplified in differentbeamlines of a Nd:glass laser system, had a central wavelength of 1054 nm and a spectral bandwidth of 2 nm, and crossedeach other in an underdense plasma in a counter-propagating geometry, off-set by 10◦. It is shown that the energy transferand the wavelength of the generated Brillouin peak depend on the plasma density, the intensity of the laser pulses, and thecompetition between two-plasmon decay and stimulated Raman scatter instabilities. The highest obtained energy transferfrom pump to probe pulse is 2.5%, at a plasma density of 0.17ncr, and this energy transfer increases significantly withplasma density. Therefore, our results suggest that much higher efficiencies can be obtained when higher densities (above0.25ncr) are used.
Resumo:
Experimental results on relativistic surface HHG at a repetition rate of 10 Hz are presented. Average powers in the 10?W range are generated in the spectral range of 51 to 26 nm (24-48 eV). The surface harmonic radiation is produced by focusing the second-harmonic of a high-power laser onto a rotating glass surface to moderately relativistic intensities of 3×10 19Wcm ?2. The harmonic emission exhibits a divergence of 26 mrad. Together with absolute photon numbers recorded by a calibrated spectrometer, this allows for the determination of the extreme ultraviolet (XUV) yield. The pulse energies of individual harmonics are reaching up to the μJ level, equivalent to an efficiency of 10 ?5. The capability of producing stable and intense high-harmonic radiation from relativistic surface plasmas may facilitate experiments on nonlinear ionization or the seeding of free-electron lasers. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.
Resumo:
La structuration laser femtoseconde de verres d’oxydes est aujourd’hui un domaine de recherche en pleine expansion. L’interaction laser-matière est de plus en plus utilisée pour sa facilité de mise en œuvre et les nombreuses applications qui découlent de la fabrication des composants photoniques, déjà utilisés dans l’industrie des hautes technologies. En effet, un faisceau d’impulsions ultracourtes focalisé dans un matériau transparent atteint une intensité suffisante pour modifier la matière en trois dimensions sur des échelles micro et nanométriques. Cependant, l’interaction laser-matière à ces régimes d’intensité n’est pas encore complètement maîtrisée, et les matériaux employés ne sont pas entièrement adaptés aux nouvelles applications photoniques. Par ce travail de thèse, nous nous efforçons donc d’apporter des réponses à ces interrogations. Le mémoire est articulé autour de deux grands volets. Le premier aborde la question de l’interaction de surface de verres avec de telles impulsions lumineuses qui mènent à l’auto-organisation périodique de la matière structurée. L’influence du dopage en ions photosensibles et des paramètres d’irradiation est étudiée afin d’appuyer et de conforter le modèle d’incubation pour la formation de nanoréseaux de surface. À travers une approche innovante, nous avons réussi à apporter un contrôle de ces structures nanométriques périodiques pour de futures applications. Le second volet traite de cristallisation localisée en volume induite en grande partie par l’interaction laser-matière. Plusieurs matrices vitreuses, avec différents dopages en sel d’argent, ont été étudiées pour comprendre les mécanismes de précipitation de nanoparticules d’argent. Ce travail démontre le lien entre la physicochimie de la matrice vitreuse et le caractère hors équilibre thermodynamique de l’interaction qui influence les conditions de nucléation et de croissance de ces nano-objets. Tous ces résultats sont confrontés à des modélisations de la réponse optique du plasmon de surface des nanoparticules métalliques. Les nombreuses perspectives de ce travail ouvrent sur de nouvelles approches quant à la caractérisation, aux applications et à la compréhension de l’interaction laser femtoseconde pour l’inscription directe de briques photoniques dans des matrices vitreuses.
Resumo:
Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers
Resumo:
Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.
Resumo:
This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm(2), 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) +/- 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.
Resumo:
Tissue repair is an integration of dynamic interactive processes that involves soluble mediators, blood components, production of extra-cellular matrix and mesenchymal cells. Many studies involving the use of LLLT shows that the healing process is favored by such therapy. The aim of this work was to evaluate, through histological analysis, the tissue effects of cutaneous wounds submitted to different intensities and a same irradiation dose with lasers in λ670 or λ685nm. Eighteen animals were divided in two experimental groups according to wavelength used (λ670 or λ685nm). Each one of these groups was divided still in three subgroups of three animals each, related to the intensity of applied irradiation (2, 15 or 25mW). Twelve animals acted as untreated controls and were not irradiated. The irradiation was carried out during seven days. The animals were sacrificed eight days after surgery. The specimens were removed, kept in 4% formaldehyde for 24 hours, routinely prepared to wax, stained with H&E and analyzed under light microscopy. The histological characteristics observed, so much in the irradiated animals, as in the control, they are indicative of a substitution repair process, however, the LLLT modulatory positive effect was observed, in the healing process, mainly associate to the use of the shorter wavelength and low power. The results of the present study indicate that LLLT improves cutaneous wound repair and best results are achieved when higher potencies associated to short wavelengths or lower potencies associated to higher wavelengths are used.
Resumo:
Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.
Resumo:
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper
Resumo:
The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser?capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.
Resumo:
This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics
Resumo:
We have observed a positive change or refractive index and formation of waveguides in YAG:Cr4+ crystals, exposed to a high-intensity femtosecond laser beam. The technique is potentially suitable for fabrication of waveguide lasers in crystal materials.
Resumo:
The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.
Resumo:
The use of high intensity femtosecond laser sources for inscribing fibre gratings has attained significant interest. The principal advantage of high-energy pulses is their ability for grating inscription in any material type without preprocessing or special core doping - the inscription process is controlled multi-photon absorption, void generation and subsequent local refractive index changes. The formation of grating structures in photonics crystal fibre has proven difficult, as the presence of holes within the fibre that allow wave-guidance impair and scatter the femtosecond inscription beam. Here we report on the consistent manufacture of long period gratings in endlessly single mode microstructure fibre and on their characterisation to external perturbations. Long period gratings are currently the subject of considerable research interest due to their potential applications as filters and as sensing devices, responsive to strain, temperature, bending and refractive index. Compared to the more mature fibre Bragg grating sensors, LPGs have more complex spectra, usually with broader spectral features. On the other hand they are intrinsically sensitive to bending and refractive index. Perhaps more importantly, the fibre design and choice of grating period can have a considerable influence over the sensitivity to the various parameters, for example allowing the creation of a bend sensor with minimal temperature cross-sensitivity. This control is not possible with FBG sensors. Here we compare the effects of symmetric and asymmetric femtosecond laser inscription.