765 resultados para Gymnotus aff. inaequilabiatus
Resumo:
Sites 511 and 512 (Falkland Plateau) and 513 (Argentine Basin) penetrated calcareous-siliceous oozes of the middle and upper Eocene and lower Oligocene with rather numerous planktonic foraminifers. Upper Oligocene, Miocene, Pliocene, and Quaternary sections are composed mostly of siliceous sediments (Sites 511-514) where planktonic foraminifers are rare or absent. High-latitude planktonic foraminifers of the Austral Province are characterized by impoverished assemblages - only representatives of Globigerina, Globigerinita, Globorotaloides, and Globorotalia with a rounded peripheral margin are found. In the Paleogene, these species are supplemented, in lesser amounts, by representatives of Globigerapsis, Acarinina, Pseudogloboquadrina, Pseudohastigerina, and Chiloguembelina. Assemblages of planktonic foraminifers have low stratigraphic resolution, especially in the upper Oligocene-Quaternary. This reflects the generally deteriorating Cenozoic climate, which evinced a sharp change in the upper Oligocene that is connected with initiation of the circum-Antarctic current near the Paleogene/Neogene boundary. Comparison of Paleogene and Neogene planktonic foraminifers of the South Atlantic (Falkland Plateau, Argentine Basin, 46-51°S) and the North Atlantic (Rockall Plateau, 55-56°N) indicates that the South Atlantic climate was much colder than that of the same latitudes of the North Atlantic. Paleogene oozes of the Falkland Plateau rest unconf ormably on Maestrichtian sediments and in their turn are overlain unconformably by Neogene-Quaternary oozes. Cenozoic sections are stratigraphically discontinuous: periods of intensive biogenic sedimentation resulting in a thick succession of sediments alternated with periods of nondeposition and strong erosion that resulted in hiatuses and unconformities. In the Argentine Basin, Oligocene calcareous-siliceous oozes rest on basalts of the oceanic basement; they are replaced upward in the section by Neogene-Quaternary siliceous oozes with some hiatuses. Planktonic foraminifers here clearly demonstrate the processes of oceanic subsidence and CCD fluctuations as well as Polar Front migrations during Cenozoic time. Fifty species of planktonic foraminifers are discussed and illustrated.
Resumo:
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. During R.R.S. Charles Darwin Cruises 145 and 146 (12 March to May 28 2003), 11 multicores were taken on the continental margin off Karachi, Pakistan. Two transects were sampled, constituting a composite bathymetric profile from 136 m (above the OMZ in spring 2003) down to 1870 m water depth. Cores (surface area 25.5 cm2) were processed as follows: for stations situated above, and in the upper part of the OMZ, sediment slices were taken for the 0-0.5 and 0.5-1 cm intervals, and then in 1 cm intervals down to 10 cm. For the lower part of the OMZ, the second centimetre was also sliced in half-centimetre intervals. Each sample was stored in 10 % borax-buffered formalin for further processing. Onshore, the samples were wet sieved over 63 µm, 150 µm and 300 µm sieves and the residues were stained for one week in ethanol with Rose Bengal. After staining, the residue was washed again. The stained faunas were picked wet in three granulometric fractions (63-150 µm, 150-300 µm and >300 µm), down to 10 cm depth. To gain more insight into the population dynamics we investigated the dead (unstained) foraminifera in the 2-3 cm level for the fractions 150-300 µm and >300 µm. The fractions >300 µm and 150-300 µm show nearly the same faunal distribution and therefore the results are presented here for both fractions combined (i.e. the >150 µm fraction). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment; only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (ab. 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterized by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats.
Resumo:
From the DSDP Legs 1, 11, 13, 17, 25, 27, 32, 36, 41, 43, 44, 50, and 62 the Lower Cretaceous foraminifers have been investigated for biostratigraphical, taxonomical, and palaeoecological purposes. An overview of the cored Lower Cretaceous sections of Leg 1-80 is given. In the Northern Atlantic Ocean characteristic foraminiferal faunas are missing from the Upper Tithonian to the Valanginian due to a marked regression which caused hiatuses. In areas without black shale conditions Valanginian to Barremian medium rich to poor microfaunas with Praedorothia ouachensis (Sigal) of the Praedorothia ouachensis Zone (Valanginian-Hauterivian). The Hauterivian-Aptian interval is characterized by zones of Gavelinella barrerniana, Gaudryina dividens, and Conorotalites aptiensis. During the Albian a world-wide fauna consisting of agglutinated and calcareous foraminifers of the Pseudoclavulina gaultina Zone is established in areas lacking the wide-spread black-shale conditions. The Upper Albian and the Cenomanian are represented by the Gavelinella eenomanica Zone. Some ornamented species of the nodosariids (Citharina, Lenticulina), Gavelinella, Conorotatites, Pleurostomella, Vatvulineria, and Osangularia are of some importance for the biostratigraphy of the Berriasian-Albian interval. The Berriasian to Albian zones introduced for the Tethys and the DSDP by Moullade (1984) could only be of some local importance due to the long stratigraphical range of the foraminiferal species used. In the Indian Ocean an exact stratigraphical age cannot be assigned to the few Neocomian foraminiferal faunas of a cooler sea water (Site 261). These faunas mainly contain primitive agglutinated foraminifers, because in most cases the calcareous tests are dissolved or redeposited. In the Pacific Ocean most of the Berriasian to Aptian microfaunas are of minor biostratigraphical and palaeoecological importance for reasons of poor core recoveries, contaminations or original foraminiferal poverty (black shales). Since the Albian there are somewhat higher-diverse faunas of calcareous and agglutinated foraminifers with index species of the Pseudoclavulina gaultina Zone. As a rule, the boundary Albian/Cenomanian is set by means of planktonic foraminifers because no other foraminifer has its first appearance datum during this interval, except Gavelinella cenornanica. During the Albian very uniform, world-wide foraminiferal faunas without a marked provincialism are obvious.
Resumo:
Ocean Drilling Program (ODP) Leg 114 recovered nannofossil-bearing sediments from seven sites in the high latitudes of the South Atlantic Ocean. Cretaceous sections were recovered from Sites 698 and 700, located on the Northeast Georgia Rise and its lower flanks, respectively. These contain distinctive high-latitude nannofossil floras similar to those from high-latitude areas of the Northern Hemisphere. Most of the biostratigraphic datums used to date the upper Campanian to Maestrichtian interval appear to lie at approximately the same level in both hemispheres. The FAD of Nephrolithus frequens is confirmed to be diachronous with an earlier occurrence in high latitudes. The LAD of Monomarginatus primus n. sp. also appears to be diachronous with a later LAD in the high latitudes of the Southern Hemisphere. Fossiliferous Paleocene to lowermost Miocene sediments were recovered at all seven sites, from the Northeast Georgia Rise in the west to the Meteor Rise in the east. These nannofossil floras, although restricted in diversity and only poorly preserved, are sufficiently distinctive to allow the recognition of 19 zones and three subzones, which are used to date and correlate the cores recovered. Only Site 704 on the Meteor Rise yielded a substantial section of Miocene to Quaternary nannofossil-rich sediments. The nannofossil floras of this section are of very low diversity, with usually fewer than eight species present. Some stratigraphic ranges of important biostratigraphic datum species are observed to be different in the high-latitude sections from those recorded from low-latitude areas. The LAD of Reticulofenestra bisecta, when calibrated by magnetostratigraphy, appears to occur earlier in Hole 699A (within Chron C6CR) than in Hole 703A and possibly Hole 704B and in other published accounts of lower latitude sites in the South Atlantic. The FAD of Nannotetrina fulgens/N. cristata appears to occur later in Hole 702B (Chron C20R) than it does in other published accounts of lower latitude sites in the South Atlantic. Diachroneity is also suspected in the stratigraphic ranges of Chiasmolithus solitus and Chiasmolithus oamaruensis, although poor magnetostratigraphic results through the critical interval prevent confirmation of this. Differences in the relative stratigraphic ranges of lsthmolithus recurvus and Cribrocentrum coenurumlC. reticulatum at Sites 699 and 703 are noted. These possibly suggest warmer surface waters on the eastern side (Site 703) of the middle to late Eocene South Atlantic than those on the western side (Site 699). The diversities of the nannofossil floras and the presence of the warm-water genera Discoaster, Sphenolithus, Helicosphaera, and Amaurolithus reflect the changing surface water temperatures throughout the Cenozoic. Warmer periods are inferred for the late Paleocene to early middle Eocene, late middle Eocene to late Eocene, latest Oligocene to earliest Miocene, and possibly the Pliocene. Colder periods are inferred for the middle Eocene, most of the Oligocene, and the Miocene. Dramatic changes in the nannofossil floras of the Pleistocene of Site 704 are thought to reflect a rapidly changing environment. Monomarginatus primus, a new species from the Upper Cretaceous strata of Hole 700B, is described.
Resumo:
Nearly complete Paleogene sedimentary sequences were recovered by Leg 114 to the subantarctic South Atlantic. Silicoflagellate assemblages from the Paleogene and immediately overlying lower Neogene from Sites 698 (Northeast Georgia Rise), 700 (East Georgia Basin), 702 (Islas Orcadas Rise), and 703 (Meteor Rise) were examined. The described assemblage from Hole 700B represents the most complete yet described from the Paleocene, encompassing planktonic foraminifer Zones Plb (upper part) through P4 and Subchrons C25N to C23N. All lower Eocene sediments are barren as a result of diagenesis, except for a single sample from Hole 698A. Middle Eocene silicoflagellates described from Hole 702B range in age from early middle Eocene (P10) to late Eocene (PI5), with correlations to Subchrons C21N to C18N. Hole 703A contains late Eocene through early Miocene assemblages, with paleomagnetic control from Subchrons C16R to C6AAN. Leg 114 biosiliceous sequences contain exceptionally diverse assemblages of silicoflagellates. Approximately 155 species and separate morphotypes are described from the Paleogene and earliest Neogene. New taxa described from Leg 114 sediments include Bachmannocena vetula n. sp., Corbisema animoparallela n. sp., Corbisema camara n. sp., Corbisema constricta spinosa n. subsp., Corbisema delicata n. sp., Corbisema hastata aha n. subsp., Corbisema praedelicata n. sp., Corbisema scapana n. sp., Corbisema triacantha lepidospinosa n. subsp., Dictyocha deflandreifurtivia n. subsp., Naviculopsis biapiculata nodulifera n. subsp., Naviculopsis cruciata n. sp., Naviculopsis pandalata n. sp., Naviculopsis primativa n. sp., and Naviculopsis trispinosa eminula n. subsp. Taxonomic revisions were made to the following taxa: Corbisema constricta constricta emended, Corbisema disymmetrica crenulata n. comb., Corbisema jerseyensis emended, and Distephanus antarcticus n. comb. Silicoflagellate assemblages from the Paleogene and earliest Neogene of Holes 698A, 699A, 700B, 702B, and 703A are the basis of a silicoflagellate zonation spanning the interval from 63.2 to 22.25 Ma. Silicoflagellate zones recognized in this interval include the Corbisema hastata hastata Zone, Corbisema hastata aha Zone, Dictyocha precarentis Zone, Naviculopsis constricta Zone, Naviculopsis foliacea Zone, Bachmannocena vetula Zone, Dictyocha grandis Zone, Naviculopsis pandalata Zone, Naviculopsis constricta-Bachmannocena paulschulzii Zone, Bachmannocena paulschulzii Zone, Naviculopsis trispinosa Zone with subzones a and b, Corbisema archangelskiana Zone, Naviculopsis biapiculata Zone, Distephanus raupii Zone, Distephanus raupii-Corbisema triacantha Zone, and Corbisema triacantha mediana Zone.
Resumo:
Paleocene benthic and planktonic foraminifers occur throughout a long interval of the sedimentary succession cored at Site 605. A biostratigraphic zonation based on planktonic foraminifers is proposed for this Paleocene section. Zones identified are Subbotina pseudobulloides Zone, Morozovella trinidadensis Zone, M. uncinata Zone, M. pusilla pusilla Zone, Planorotalites pseudomenardii Zone, and M. velascoensis Zone. Fluctuations in the sedimentation rate occurred at Site 605. Rates of deposition were high during the M. pusilla pusilla and P. pseudomenardii zones, and a depositional hiatus may occur at the base of the M. velascoensis Zone. Qualitative and quantitative analysis of benthic foraminiferal assemblages suggests that the Paleocene sediments of Site 605 were deposited near the upper limit of Nuttallides truempyi, that is, approximately in the middle bathyal zone (600 m or more).
Resumo:
Radiolarians form a remarkable part of the fossil plankton for Cretaceous sediments of the North Atlantic. Selected sites with long-term sedimentary successions of deep facies were studied (ODP Leg 103 and DSDP Site 398 off northwest Spain and DSDP Site 603 off the east coast of the United States). Preservation of the radiolarian faunas is generally poor, and the faunal abundance and diversity reflect the diagenetic history of the host sediment rather than the original faunal productivity. Several exceptions include abundant and some well-preserved radiolarian faunas from lower Campanian, Cenomanian/Turonian boundary, upper Albian, lower Albian, and Barremian sediments. These increases in radiolarian abundance and preservation coincide with well-established Cretaceous oceanic events in the North Atlantic. Typical faunal associations of these sections are described, and faunal associations from the Cenomanian/Turonian Boundary Event are documented for the first time in the North Atlantic. The relationship of the radiolarian blooms with coeval oceanic events in the North Atlantic is also discussed.
Resumo:
The sediments of Deep Sea Drilling Project Site 565 and University of Texas Marine Science Institute Cores IG-24-7-38 to -42 taken on the landward slope of the Middle America Trench exhibit characteristics of material subject to reworking during downslope mass flow. These characteristics include a generally homogeneous texture, lack of sedimentary structures, pervasive presence of a penetrative scaly fabric, and presence of transported benthic foraminifers. Although these features occur throughout the sediments examined, trends in bulk density, porosity, and water content, and abrupt shifts in these index physical properties and in sediment magnetic properties at Site 565 indicate that downslope sediment creep is presently most active in the upper 45 to 50 m of sediment. It cannot be determined whether progressive dewatering of sediment has brought the material at this depth to a plastic limit at which sediment can no longer flow (thus resulting in its accretion to the underlying sediments) or whether this depth represents a surface along which slumping has occurred. We suspect both are true in part, that is, that mass movements and downslope reworking accumulate sediments in a mobile layer of material that is self-limiting in thickness.
Resumo:
Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.
Resumo:
During Ocean Drilling Program Leg 178 we cored nine sites on the continental rise (Sites 1095, 1096, and 1101), continental shelf (Sites 1097, 1100, 1102, and 1103), and in an inner shelf basin, Palmer Deep (Sites 1098 and 1099), along the Pacific margin of the Antarctic Peninsula. Fossil diatoms are a key group that provides age constraint for these shelf site sediments to allow reconstruction of Antarctic Peninsula glacial history. This paper provides the systematic paleontology of diatoms applied in biostratigraphic and paleoceanographic studies and includes a total of 33 plates. Taxonomic confusion in previous reports, including biostratigraphically useful species such as Thalassiosira inura and Thalassiosira complicata, is discussed. These systematics and taxonomic discussions help to provide a reference for Neogene diatoms in the Southern Ocean.
Resumo:
Stratigraphic, faunal and isotopic analyses of the Maastrichtian at DSDP sites 525A and 21 in the South Atlantic reveal a planktic foraminiferal fauna characterized by two major events, an early late Maastrichtian diversification and end-Maastrichtian mass extinction. Both events are accompanied by major changes in climate and productivity. The diversification event which occurred in two steps between 70.5 and 69.1 Ma increased species richness by a total of 43% and coincided with the onset of major cooling in surface and bottom waters and increased surface productivity. The onset of the terminal decline in Maastrichtian species richness began at 67.5 Ma and the first significant decline in surface productivity occurred at 66.2 Ma, coincident maximum cooling to 13°C in surface waters and the reduction of the surface-to-deep temperature gradient to less than 5°C. Major climatic and moderate productivity changes mark the mass extinction and the last 500 kyr of the Maastrichtian. Between 200 and 400 kyr before the K-T boundary surface and deep waters warmed rapidly by 3-4°C and cooled again during the last 100 kyr of the Maastrichtian. Surface productivity decreased only moderately across the K-T boundary. Species richness began to decline during the late Maastrichtian cooling and by K-T boundary time, the mass extinction had claimed 66% of the species. Viewed within the context of Maastrichtian climate and productivity changes, the K-T mass extinction could have resulted from extreme environmental stress even without the addition of an extraterrestrial impact.
Resumo:
Depth habitats of 56 late Cretaceous planktonic foraminiferal species from cool and warm climate modes were determined based on stable isotope analyses of deep-sea samples from the equatorial Pacific DSDP Sites 577A and 463, and South Atlantic DSDP Site 525A. The following conclusions can be reached: Planoglobulina multicamerata (De Klasz) and Heterohelix rajagopalani (Govindan) occupied the deepest plankton habitats, followed by Abathomphalus mayaroensis (Bolli), Globotruncanella havanensis (Voorwijk), Gublerina cuvillieri Kikoine, and Laeviheterohelix glabrans (Cushman) also at subthermocline depth. Most keeled globotruncanids, and possibly Globigerinelliodes and Racemiguembelina species, lived at or within the thermocline layer. Heterohelix globulosa (Ehrenberg) and Rugoglobigerina, Pseudotextularia and Planoglobulina occupied the subsurface depth of the mixed layer, and Pseudoguembelina species inhabited the surface mixed layer. However, depth ranking of some species varied depending on warm or cool climate modes, and late Campanian or Maastrichtian age. For example, most keeled globotruncanids occupied similar shallow subsurface habitats as Rugoglobigerina during the warm late Campanian, but occupied the deeper thermocline layer during cool climatic intervals. Two distinct types of "vital effect" mechanisms reflecting photosymbiosis and respiration effects can be recognized by the exceptional delta13C signals of some species. (1) Photosymbiosis is implied by the repetitive pattern of relatively enriched delta13C values of Racemiguembelina (strongest), Planoglobulina, Rosita and Rugoglobigerina species, Pseudoguembelina excolata (weakest). (2) Enriched respiration 12C products are recognized in A. mayaroensis, Gublerina acuta De Klasz, and Heterohelix planata (Cushman). Isotopic trends between samples suggest that photosymbiotic activities varied between localities or during different climate modes, and may have ceased under certain environmental conditions. The appearance of most photosymbiotic species in the late Maastrichtian suggests oligotrophic conditions associated with increased water-mass stratification.