933 resultados para Gut bacteria
Resumo:
The objective of this study was to identify ant occurrence in hospital environments in the State of Santa Catarina, along with associated bacteria. Ants were collected monthly from five inpatient clinics in two hospitals in the municipality of Chapecó, from August 2003 to June 2004. They were collected under aseptic conditions using swabs moistened with sterile distilled water and put into test tubes containing BHI for microbiological analysis. After 24 hours, cultures were made in both 5% sheep blood and MacConkey agar, which were incubated for 24 hours at 35/37°C. The Gram characterization, culture identification and biochemical characterization followed standardized rules for clinical microbiology. Seven species of ants were identified, of which the most frequent were Monomorium pharaonis (71.5%) and Solenopsis saevissima (57%), and nineteen species of bacteria was isolated from hospital "A".
Resumo:
Energy conservation in chemotrophic anaerobic bacteria is achieved by two possible processes, substrate level phosphorylation (SLP) and electron transfer phosphorylation (ETP). This second mechanism, also known as respiration, involves chemiosmotic coupling. However, a third mechanism for energy coupling was recently proposed: the flavin-based electron bifurcation (FBEB). (...)
Resumo:
INTRODUCTION: The purpose of this study was to establish the late onset sepsis (LOS) rate of our service, characterize the intestinal microbiota and evaluate a possible association between gut flora and sepsis in surgical infants who were receiving parenteral nutrition (PN). METHODS: Surveillance cultures of the gut were taken at the start of PN and thereafter once a week. Specimens for blood culture were collected based on clinical criteria established by the medical staff. The central venous catheter (CVC) tip was removed under aseptic conditions. Standard laboratory methods were used to identify the microorganisms that grew on cultures of gut, blood and CVC tip. RESULTS: 74 very low birth weight infants were analyzed. All the infants were receiving PN and antibiotics when the gut culture was started. In total, 21 (28.4%) infants experienced 28 episodes of LOS with no identified source. Coagulase negative staphylococci were the most common bacteria identified, both in the intestine (74.2%) and blood (67.8%). All infections occurred in patients who received PN through a central venous catheter. Six infants experienced episodes of microbial translocation. CONCLUSIONS: In this study, LOS was the most frequent episode in neonates receiving parenteral nutrition who had been submitted to surgery; 28.6% of this infection was probably a gut-derived phenomenon and requires novel strategies for prevention.
Resumo:
INTRODUCTION : Antimicrobial resistance is an increasing threat in hospitalized patients, and inappropriate empirical antimicrobial therapy is known to adversely affect outcomes in ventilator-associated pneumonia (VAP). The aim of this study was to evaluate antimicrobial usage, incidence, etiology, and antimicrobial resistance trends for prominent nosocomial pathogens causing ventilator-associated pneumonia in a clinical-surgical intensive care unit (ICU). METHODS : Gram-negative bacilli and Staphylococcus aureus causing VAP, as well as their antimicrobial resistance patterns and data on consumption (defined daily dose [DDD] per 1,000 patient days) of glycopeptides, extended-spectrum cephalosporins, and carbapenems in the unit were evaluated in two different periods (A and B). RESULTS: Antimicrobial use was high, mainly of broad-spectrum cephalosporins, with a significant increase in the consumption of glycopeptides (p < 0.0001) and carbapenems (p < 0.007) in period B. For Acinetobacter baumannii and members of the Enterobacteriaceae family, 5.27- and 3.06-fold increases in VAPs, respectively, were noted, and a significant increase in resistance rates was found for imipenem-resistant A. baumannii (p = 0.003) and third-generation cephalosporins-resistant Enterobacteriaceae (p = 0.01) isolates in this same period. CONCLUSIONS: Our results suggest that there is a link between antibiotics usage at institutional levels and resistant bacteria. The use of carbapenems was related to the high rate of resistance in A. baumannii and therefore a high consumption of imipenem/meropenem could play a major role in selective pressure exerted by antibiotics in A. baumannii strains.
Resumo:
IntroductionInsects have been described as mechanical vectors of nosocomial infections.MethodsNon-biting flying insects were collected inside a pediatric ward and neonatal-intensive care unit (ICU) of a Brazilian tertiary hospital.ResultsMost (86.4%) of them were found to carry one or more species of bacteria on their external surfaces. The bacteria isolated were Gram-positive bacilli (68.2%) or cocci (40.9%), and Gram-negative bacilli (18.2%).ConclusionsInsects collected inside a hospital were carrying pathogenic bacteria; therefore, one must consider the possibility they may act as mechanical vectors of infections, in especially for debilitated or immune-compromised patients in the hospital environments where the insects were collected.
Synergistic interactions in mixed-species biofilms of pathogenic bacteria from the respiratory tract
Resumo:
IntroductionMixed-species biofilms are involved in a wide variety of infections. We studied the synergistic interactions during dual-species biofilm formation among isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia.MethodsIsolates were cultured as single-species and all possible combinations of dual-species biofilms.ResultsThe 61 A. baumannii biofilms increased by 26-fold when cultured with S. maltophilia isolates; 62 A. baumannii biofilms increased by 20-fold when cultured with S. maltophilia isolates; and 31 P. aeruginosa biofilms increased by 102-fold when cultured with S. maltophilia 106.ConclusionsSynergy was observed between two isolates, including those that inherently lacked biofilm formation ability.
Resumo:
INTRODUCTION : Bacterial translocation is the invasion of indigenous intestinal bacteria through the gut mucosa to normally sterile tissues and internal organs. Schistosomiasis may cause alterations in the immune system and damage to the intestines, portal system and mesenteric lymph nodes. This study investigated bacterial translocation and alterations in the intestinal microbiota and mucosa in schistosomiasis and splenectomized mice. METHODS : Forty female 35-day-old Swiss Webster mice were divided into the following four groups with 10 animals each: schistosomotic (ESF), splenectomized schistosomotic (ESEF), splenectomized (EF) and control (CF). Infection was achieved by introduction of 50 Schistosoma mansoni (SLM) cercariae through the skin. At 125 days after birth, half of the parasitized and unparasitized mice were subjected to splenectomy. Body weights were recorded for one week after splenectomy; then, the mice were euthanized to study bacterial translocation, microbiota composition and intestinal morphometry. RESULTS : We observed significant reductions in the weight increases in the EF, ESF and ESEF groups. There were increases of at least 1,000 CFU of intestinal microbiota bacteria in these groups compared with the CF. The EF, ESF and ESEF mice showed decreases in the heights and areas of villi and the total villus areas (perimeter). We observed frequent co-infections with various bacterial genera. CONCLUSIONS : The ESEF mice showed a higher degree of sepsis. This finding may be associated with a reduction in the immune response associated with the absence of the spleen and a reduction in nutritional absorption strengthened by both of these factors (Schistosoma infection and splenectomy).
Resumo:
ABSTRACTINTRODUCTION: Monte Carlo simulations have been used for selecting optimal antibiotic regimens for treatment of bacterial infections. The aim of this study was to assess the pharmacokinetic and pharmacodynamic target attainment of intravenous β-lactam regimens commonly used to treat bloodstream infections (BSIs) caused by Gram-negative rod-shaped organisms in a Brazilian teaching hospital.METHODS: In total, 5,000 patients were included in the Monte Carlo simulations of distinct antimicrobial regimens to estimate the likelihood of achieving free drug concentrations above the minimum inhibitory concentration (MIC; fT > MIC) for the requisite periods to clear distinct target organisms. Microbiological data were obtained from blood culture isolates harvested in our hospital from 2008 to 2010.RESULTS: In total, 614 bacterial isolates, including Escherichia coli, Enterobacterspp., Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, were analyzed Piperacillin/tazobactam failed to achieve a cumulative fraction of response (CFR) > 90% for any of the isolates. While standard dosing (short infusion) of β-lactams achieved target attainment for BSIs caused by E. coliand Enterobacterspp., pharmacodynamic target attainment against K. pneumoniaeisolates was only achieved with ceftazidime and meropenem (prolonged infusion). Lastly, only prolonged infusion of high-dose meropenem approached an ideal CFR against P. aeruginosa; however, no antimicrobial regimen achieved an ideal CFR against A. baumannii.CONCLUSIONS:These data reinforce the use of prolonged infusions of high-dose β-lactam antimicrobials as a reasonable strategy for the treatment of BSIs caused by multidrug resistant Gram-negative bacteria in Brazil.
Resumo:
Magnetospirillum (M.) sp. strain Lusitani, a perchlorate reducing bacteria (PRB), was previously isolated from a wastewater treatment plant and phylogenetic analysis was performed to classify the isolate. The DNA sequence of the genes responsible for perchlorate reduction and chlorite dismutation was determined and a model was designed based on the physiological roles of the proteins involved in the pcr-cld regulon. Chlorite dismutase (Cld) was purified from Magnetospirillum sp. strain Lusitani cells grown in anaerobiosis in the presence of perchlorate. The protein was purified up to electrophoretic grade using HPLC techniques as a 140 kDa homopentamer comprising five ~28 kDa monomers. Steady-state kinetic studies showed that the enzyme follows a Michaelis-Menten model with optimal pH and temperature of 6.0 and 5°C, respectively. The average values for the kinetic constants KM and Vmax were respectively 0.56 mM and 10.2 U, which correspond to a specific activity of 35470 U/mg and a turnover number of 16552 s-1. Cld from M. sp. strain Lusitani is inhibited by the product chloride, but not by dioxygen. Inhibition constants KiC= 460 mM and KiU= 480 mM indicated that sodium chloride is a weak mixed inhibitor of Cld, with a slightly stronger competitive character. The X-ray crystallography structure of M. sp. strain Lusitani Cld was solved at 3.0 Å resolution. In agreement with cofactor content biochemical analysis, the X-ray data showed that each Cld monomer harbors one heme b coordinated by a histidine residue (His188), hydrogen-bonded to a conserved glutamic acid residue (Glu238). The conserved neighboring arginine residue (Arg201) important for substrate positioning, was found in two different conformations in different monomers depending on the presence of the exogenous ligand thiocyanate. UV-Visible and CW-EPR spectroscopies were used to study the effect of redox agents, pH and exogenous ligands on the heme environment.
Resumo:
Staphylococcus aureus, Escherichia coli, Proteussp., Providenciasp., Citrobactersp. and Klebsiellasp. were isolated from calliphorid flies collected in eight street markets in the city of Manaus, Amazonas State, Brazil. The presence of £. coliin the samples suggests that faecal contamination is occurring and that these flies are potential vehicles of enteropathogenic bacteria to exposed foods.
Resumo:
The effects of dietary short chain fructooligosaccharides (scFOS) incorporation on hematology, fish immune status, gut microbiota composition, digestive enzymes activities, and gut morphology, was evaluated in gilthead sea bream (Sparus aurata) juveniles reared at 18 °C and 25 °C. For that purpose, fish with 32 g were fed diets including 0, 0.1, 0.25 and 0.5% scFOS during 8 weeks. Overall, scFOS had only minor effects on gilthead sea bream immune status. Lymphocytes decreased in fish fed the 0.1% scFOS diet. Fish fed the 0.5% scFOS diet presented increased nitric oxide (NO) production, while total immunoglobulins (Ig) dropped in those fish, but only in the ones reared at 25 °C. Red blood cells, hemoglobin, bactericidal activity and NO were higher at 25 °C, whereas total white blood cells, circulating thrombocytes, monocytes and neutrophils were higher at 18 °C. In fish fed scFOS, lymphocytes were higher at 18 °C. Total Ig were also higher at 18 °C but only in fish fed 0.1% and 0.5% scFOS diets. No differences in gut bacterial profiles were detected by PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) between dietary treatments. However, group's similarity was higher at 25 °C. Digestive enzymes activities were higher at 25 °C but were unaffected by prebiotics incorporation. Gut morphology was also unaffected by dietary prebiotic incorporation. Overall, gut microbiota composition, digestive enzymes activities and immunity parameters were affected by rearing temperature whereas dietary scFOS incorporation had only minor effects on these parameters. In conclusion, at the tested levels scFOS does not seem worthy of including it in gilthead sea bream juveniles diets.
Resumo:
In order to determine the lethal dose (96-h LD50) of the bacteria Aeromonas hydrophila to matrinxã, Brycon amazonicus, to be applied in challenge tests, 90 fish (63.23 ± 6.39 g) were divided into five treatments, with different bacterial solutions: T1 - Control (0.9% NaCl saline solution); T2 (4 x 10(11) cells/ mL); T3 (5 x 10(11) cells/ mL); T4 (1.36 x 10(12) cells/ mL) and T5 (3.06 x 10(12) cells/ mL). Fish were previously anesthetized with benzocaine (60 mg L-1), inoculated in the peritoneal cavity with the bacterial suspensions and then distributed into fifteen 80-L test chambers, where the water variables were monitored and fish mortality was observed. The experiment was randomly designed in three replicates and the 96-h LD50 was estimated according to the trimmed Spearman-Karber method. Water quality variables remained within adequate ranges for fish health and performance. Fish mortality rate increased with the bacterial concentrations of A. hydrophila (T1 = 0%; T2 = 16.66%; T3 = 44.44%; T4 = 72.22% and T5 = 100%), and the first mortalities were observed after 57 h, although the signs of the bacterial infection were already observed 24 h after the inoculation. The results indicate that the 96-h LD50 value of A. hydrophila to matrinxã is 6.66 x 10(11) cells/ mL.
Resumo:
ABSTRACT Maize plants can establish beneficial associations with plant growth-promoting bacteria. However, few studies have been conducted on the characterization and inoculation of these bacteria in the Amazon region. This study aimed to characterize endophytic bacteria isolated from maize in the Amazon region and to assess their capacity to promote plant growth. Fifty-five bacterial isolates were obtained from maize grown in two types of ecosystems, i.e., a cerrado (savanna) and a forest area. The isolates were characterized by the presence of the nifH gene, their ability to synthesize indole-3-acetic acid (IAA) and solubilize calcium phosphate (CaHPO4), and 16S rRNA partial gene sequencing. Twenty-four bacteria contained the nifH gene, of which seven were isolated from maize plants cultivated in a cerrado area and seventeen from a forest area. Fourteen samples showed the capacity to synthesize IAA and only four solubilized calcium phosphate. The following genera were found among these isolates: Pseudomonas; Acinetobacter; Enterobacter; Pantoea; Burkholderia and Bacillus. In addition, eight isolates with plant growth-promoting capacity were selected for a glasshouse experiment involving the inoculation of two maize genotypes (a hybrid and a variety) grown in pots containing soil. Inoculation promoted the development of the maize plants but no significant interaction between maize cultivar and bacterial inoculation was found. A high diversity of endophytic bacteria is present in the Amazon region and these bacteria have potential to promote the development of maize plants.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.