866 resultados para Grid Connection
Resumo:
Low-carbon off-grid electrification for rural areas is becoming increasingly popular in the United Kingdom. However, many developing countries have been electrifying their rural areas in this way for decades. Case study fieldwork in Nepal and findings from United Kingdom based research will be used to examine how developed nations can learn from the experience of developing countries with regard to the institutional environment and delivery approach adopted in renewable energy off-grid rural electrification. A clearer institutional framework and more direct external assistance during project development are advised. External coordinators should also engage the community in a mobilization process a priori to help alleviate internal conflicts of interest that could later impede a project. © 2011 Elsevier Ltd.
Resumo:
In this paper an Active Voltage Control (AVC) technique is presented, for series connection of insulated-gate-bipolar-transistors (IGBT) and control of diode recovery. The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. For the static voltage balancing, the AVC technique can clamp the highest collector-to-emitter voltage to a pre-set clamping voltage level. By selecting the value of the clamping voltage, the difference among series connected IGBTs can be controlled in an accepted range. Another key advantage for AVC is that by changing the reference signal at turn-on, the diode recovery can be optimized. © 2011 EPE Association - European Power Electr.
Resumo:
Power consumption of a multi-GHz local clock driver is reduced by returning energy stored in the clock-tree load capacitance back to the on-chip power-distribution grid. We call this type of return energy recycling. To achieve a nearly square clock waveform, the energy is transferred in a non-resonant way using an on-chip inductor in a configuration resembling a full-bridge DC-DC converter. A zero-voltage switching technique is implemented in the clock driver to reduce dynamic power loss associated with the high switching frequencies. A prototype implemented in 90 nm CMOS shows a power savings of 35% at 4 GHz. The area needed for the inductor in this new clock driver is about 6% of a local clock region. © 2006 IEEE.
Resumo:
Turbulence statistics have been measured immediately downstream of a regular grid made of round rods with rod spacing M. 2D-2C PIV was used to analyse a measurement area of 14M x 4M in the down and cross-stream directions respectively. The relevant Reynolds number span the range Re M = U ∞M/ν = 5 500 - 16 500. The Reynolds shear stresses recorded on two parallel measurement planes differently located relative to the grid exhibit significant discrepancies over the first 5M, but have completely homogenised in the cross-stream direction by x/M = 7. The downstream evolution of the two-point velocity correlation functions shows a progressive loss of coherence and a clear trend towards the expected isotropic behavior. The same conclusions apply to measurements taken in the wake of another regular grid made of square rods. Changes in the vortex shedding pattern from the grid were observed at the lowest Reynolds number, with two of the four rod wakes captured shedding in phase with each other but in anti-phase with a third one. The impact of this early flow coherence on the turbulence statistics did not persist due to the homogenisation process.
2D PIV measurements in the near field of grid turbulence using stitched fields from multiple cameras
Resumo:
We present measurements of grid turbulence using 2D particle image velocimetry taken immediately downstream from the grid at a Reynolds number of Re M = 16500 where M is the rod spacing. A long field of view of 14M x 4M in the down- and cross-stream directions was achieved by stitching multiple cameras together. Two uniform biplanar grids were selected to have the same M and pressure drop but different rod diameter D and crosssection. A large data set (10 4 vector fields) was obtained to ensure good convergence of second-order statistics. Estimations of the dissipation rate ε of turbulent kinetic energy (TKE) were found to be sensitive to the number of meansquared velocity gradient terms included and not whether the turbulence was assumed to adhere to isotropy or axisymmetry. The resolution dependency of different turbulence statistics was assessed with a procedure that does not rely on the dissipation scale η. The streamwise evolution of the TKE components and ε was found to collapse across grids when the rod diameter was included in the normalisation. We argue that this should be the case between all regular grids when the other relevant dimensionless quantities are matched and the flow has become homogeneous across the stream. Two-point space correlation functions at x/M = 1 show evidence of complex wake interactions which exhibit a strong Reynolds number dependence. However, these changes in initial conditions disappear indicating rapid cross-stream homogenisation. On the other hand, isotropy was, as expected, not found to be established by x/M = 12 for any case studied. © Springer-Verlag 2012.
Resumo:
Effective management is a key to ensuring the current and future sustainability of land, water and energy resources. Identifying the complexities of such management is not an easy task, especially since past studies have focussed on studying these resources in isolation from one another. However, with rapid population growth and an increase in the awareness of a potential change in climatic conditions that may affect the demand for and supply of food, water and energy, there has been a growing need to integrate the planning decisions relating to these three resources. The paper shows the visualisation of linked resources by drawing a set of interconnected Sankey diagrams for energy, water and land. These track the changes from basic resource (e.g. coal, surface water, groundwater and cropland) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). The focus here is on the water analysis aspects of the tool, which uses California as a detailed case study. The movement of water in California is traced from its source to its services by mapping the different transformations of water from when it becomes available, through its use, to further treatment, to final sinks (including recycling and reuse of that resource). The connections that water has with energy and land resources for the state of California are highlighted. This includes the amount of energy used to pump and treat water, and the amount of water used for energy production and the land resources which create a water demand to produce crops for food. By mapping water in this way, policy-makers and resource managers can more easily understand the competing uses of water (environment, agriculture and urban use) through the identification of the services it delivers (e.g. sanitation, agriculture, landscaping), the potential opportunities for improving the management of the resource (e.g. building new desalination plants, reducing the demand for services), and the connections with other resources which are often overlooked in a traditional sector-based management strategy.
Resumo:
Low-carbon off-grid electrification for rural areas is becoming increasingly popular in developed nations such as the United Kingdom. However, many developing countries have been electrifying their rural areas in this way for decades. Case study fieldwork in Nepal and findings from UK-based research will be used to examine how developed nations can learn from the experience of developing countries with regards the institutional environment and delivery approach adopted in renewable energy off-grid rural electrification. A clearer institutional framework and more direct external assistance during project development are advised. External coordinators should also engage the community in a mobilization process a priori to help alleviate internal conflicts of interest that could later impede a project. ©2010 IEEE.
Resumo:
This paper presents the use of an Active Voltage Control (AVC) technique for balancing the voltages in a series connection of Insulated Gate Bipolar Transistors (IGBTs). The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. For the static voltage balancing, a temporary clamp technique is introduced. The temporary clamp technique clamps the collector-emitter voltage of all the series connected IGBTs at the ideal voltage so that the IGBTs will share the voltage evenly. © 2012 IEEE.
Resumo:
A new scalable Monotonically Integrated Large Eddy Simulation (MILES) method based on the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) has been applied for the simulation of unsteady flow around NACA0012 airfoil at Re = 400,000 and M = 0.058. The flow solution is coupled with the Ffowcs Williams-Hawkings formulation for far-field noise prediction. The computational modeling results are presented for several computational grid resolutions: 8, 16, and 32 million grid cells and compared with the experimental data available.
Resumo:
We present a fixed-grid finite element technique for fluid-structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b-spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision-stabilisation technique is used to ensure inf-sup stability. The beam equations are discretised with b-splines and the shell equations with subdivision basis functions, both leading to a rotation-free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet-Robin partitioning scheme, and the fluid equations are solved with a pressure-correction method. Auxiliary techniques employed for improving numerical robustness include the level-set based implicit representation of the structure interface on the fluid grid, a cut-cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. © 2013 John Wiley & Sons, Ltd.
Resumo:
This paper develops a sociomaterial perspective on digital coordination. It extends Pickering’s mangle of practice by using a trichordal approach to temporal emergence. We provide new understanding as to how the nonhuman and human agencies involved in coordination are embedded in the past, present, and future. We draw on an in-depth field study conducted between 2006 and 2010 of the development, introduction, and use of a computing grid infrastructure by the CERN particle physics community. Three coordination tensions are identified at different temporal dimensions, namelyobtaining adequate transparency in the present, modeling a future infrastructure, and the historical disciplining of social and material inertias. We propose and develop the concept of digital coordination, and contribute a trichordal temporal approach to understanding the development and use of digital infrastructure as being orientated to the past and future while emerging in the present.