918 resultados para Gregorio I, Papa, Santo, 540-604
Resumo:
BACKGROUND: Peri-implantitis is a frequent finding in patients with dental implants. The present study compared two non-surgical mechanical debridement methods of peri-implantitis. MATERIAL AND METHODS: Thirty-seven subjects (mean age 61.5; S.D+/-12.4), with one implant each, demonstrating peri-implantitis were randomized, and those treated either with titanium hand-instruments or with an ultrasonic device were enrolled. Data were obtained before treatment, and at 1, 3, and 6 months. Parametric and non-parametric statistics were used. RESULTS: Thirty-one subjects completed the study. The mean bone loss at implants in both groups was 1.5 mm (SD +/-1.2 mm). No group differences for plaque or gingival indices were found at any time point. Baseline and 6-month mean probing pocket depths (PPD) at implants were 5.1 and 4.9 mm (p=0.30) in both groups. Plaque scores at treated implants decreased from 73% to 53% (p<0.01). Bleeding scores also decreased (p<0.01), with no group differences. No differences in the total bacterial counts were found over time. Higher total bacterial counts were found immediately after treatment (p<0.01) and at 1 week for ultrasonic-treated implants (p<0.05). CONCLUSIONS: No group differences were found in the treatment outcomes. While plaque and bleeding scores improved, no effects on PPD were identified.
Resumo:
The synthesis and characterisation of copper(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*) and their use as catalysts in asymmetric cyclopropanation reactions are reported. All ligands and metal complexes were fully characterised, including crystal structures of some species determined by X-ray diffraction on single crystals. This allowed characterising the very different conformations of the macrocycles which could be induced by different substituents or by metal complexation. The strategy adopted for the ligand synthesis is very flexible allowing several structural modifications. A small library of macrocyclic ligands possessing the same donor properties but with either C-1 or C-2 symmetry was synthesized. Cyclopropane products with both aromatic and aliphatic olefins were obtained in good yields and enantiomeric excesses up to 99%.
Resumo:
Plasmacytoid dendritic cells (pDCs) are a rare population of circulating cells, which selectively express intracellular Toll-like receptors (TLR)-7 and TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-a/b) in response to viruses or host derived nucleic acid containing complexes. pDCs are normally absent in skin but accumulate in the skin of psoriasis patients where their chronic activation to produce IFN-a/b drives the disease formation. Whether pDCs and their activation to produce IFN-a/b play a functional role in healthy skin is unknown. Here we show that pDCs are rapidly and transiently recruited into healthy human and mouse skin upon epidermal injury. Infiltrating pDCs were found to sense nucleic acids in wounded skin via TLRs, leading to the production of IFN-a/b. The production of IFN-a/b was paralleled by a short lived expression of cathelicidins, which form complexes with extracellular nucleic acids and activated pDCs to produce IFN-a/b in vitro. In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-a/b in wounded skin, suggesting redundancy of this pathway. Depletion of pDCs or inhibition of IFN-a/bR signaling significantly impaired the inflammatory response and delayed re-epithelialization of skin wounds. Thus we uncover a novel role of pDCs in sensing skin injury via TLR mediated recognition of nucleic acids and demonstrate their involvement in the early inflammatory process and wound healing response through the production of IFN-a/b.
Resumo:
The gas phase equilibria Ba + LnX = BaX + Ln (Ln = Sm, Eu, Yb; X = Cl, Br, I) were investigated by Knudsen effusion mass spectrometry using a low energy of ionizing electrons to avoid fragmentation processes. The BaX molecules were used as references with well-established bond energies. The atomization enthalpies ΔatH0° of the LnX molecules were determined to be 427 ± 9 (SmCl), 409 ± 9 (EuCl), 366 ± 9 (YbCl), 360 ± 10 (SmBr), 356 ± 13 (EuBr), 316 ± 9 (YbBr), 317 ± 10 (SmI), 293 ± 10 (EuI), and 283 ± 10 (YbI) kJ·mol−1.
Resumo:
While several studies have investigated winter-time air pollution with a wide range of concentration levels, hardly any results are available for longer time periods covering several winter-smog episodes at various locations; e.g., often only a few weeks from a single winter are investigated. Here, we present source apportionment results of winter-smog episodes from 16 air pollution monitoring stations across Switzerland from five consecutive winters. Radiocarbon (14C) analyses of the elemental (EC) and organic (OC) carbon fractions, as well as levoglucosan, major water-soluble ionic species and gas-phase pollutant measurements were used to characterize the different sources of PM10. The most important contributions to PM10 during winter-smog episodes in Switzerland were on average the secondary inorganic constituents (sum of nitrate, sulfate and ammonium = 41 ± 15%) followed by organic matter (OM) (34 ± 13%) and EC (5 ± 2%). The non-fossil fractions of OC (fNF,OC) ranged on average from 69 to 85 and 80 to 95% for stations north and south of the Alps, respectively, showing that traffic contributes on average only up to ~ 30% to OC. The non-fossil fraction of EC (fNF,EC), entirely attributable to primary wood burning, was on average 42 ± 13 and 49 ± 15% for north and south of the Alps, respectively. While a high correlation was observed between fossil EC and nitrogen oxides, both primarily emitted by traffic, these species did not significantly correlate with fossil OC (OCF), which seems to suggest that a considerable amount of OCF is secondary, from fossil precursors. Elevated fNF,EC and fNF,OC values and the high correlation of the latter with other wood burning markers, including levoglucosan and water soluble potassium (K+) indicate that residential wood burning is the major source of carbonaceous aerosols during winter-smog episodes in Switzerland. The inspection of the non-fossil OC and EC levels and the relation with levoglucosan and water-soluble K+ shows different ratios for stations north and south of the Alps (most likely because of differences in burning technologies) for these two regions in Switzerland.