962 resultados para Gomphrena elegans
Resumo:
Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi co-transporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than 2 decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the C. elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline.
Resumo:
Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.
Resumo:
The basement membrane (BM) is a highly conserved form of extracellular matrix that underlies or surrounds and supports most animal tissues. BMs are crossed by cells during various remodeling events in development, immune surveillance, or during cancer metastasis. Because BMs are dense and not easily penetrable, most of these cells must open a gap in order to facilitate their migration. The mechanisms by which cells execute these changes are poorly understood. A developmental event that requires the opening of a BM gap is C. elegans uterine-vulval connection. The anchor cell (AC), a specialized uterine cell, creates a de novo BM gap. Subsequent widening of the BM gap involves the underlying vulval precursor cells (VPCs) and the π cells, uterine neighbors of the AC through non-proteolytic BM sliding. Using forward and reverse genetic screening, transcriptome profiling, and live-cell imaging, I investigated how the cells in these tissues accomplish BM gap formation. In Chapter 2, I identify two potentially novel regulators of BM breaching, isolated through a large-scale forward genetic screen and characterize the invasion defect in these mutants. In Chapter 3, I describe single-cell transcriptome sequencing of the invasive AC. In Chapter 4, I describe the role of the π cells in opening the nascent BM gap. A complete developmental pathway for this process has been elucidated: the AC induces the π fate through Notch signaling, after which the π cells upregulate the Sec14 family protein CTG-1, which in turn restricts the trafficking of DGN-1 (dystroglycan), a laminin receptor, allowing the BM to slide. Chapter 5 outlines the implications of these discoveries.
Resumo:
A functional nervous system requires the precise arrangement of all nerve cells and their neurites. To achieve this correct assembly, a myriad of molecular guidance cues works together to direct the outgrowth of neurites to their correct positions. The small nematode C. elegans provides the ideal model system to study the complex mechanisms of neurite guidance due to its relatively simple nervous system, composed of 302 neurons. I used two mechanosensory neurons, called the posterior lateral microtubule (PLM), to investigate the role of the ephrin and Eph receptor protein family in neurite termination in C. elegans. Activation of the C. elegans Eph receptor VAB-1 on the PLM growth cone is sufficient to cause PLM termination, but the identity and location of the activating ligand has not been established. In my thesis I investigated the ability of the ephrin ligand EFN-1 to activate VAB-1 to cause PLM termination when expressed on the same cell (in cis) and on opposing cells (in trans) to the receptor. I showed that EFN-1 is able to activate VAB-1 in cis and in trans to cause PLM termination. I also assessed the hypodermal seam cells as the source of the ephrin stop cue using fluorescently labelled and seam cell mutant transgenic worms. I found that although the PLM shows consistent termination on the seam cell V2 in wild type worms independent of PLM length, this process is not significantly disrupted in seam cell mutants. With this information I have created a new hypothesis that the PLM neurite is able the provide a positional cue for the developing seam cells, and have created a new transgenic strain which can be used to assess the impact of PLM and ALM cell ablation on seam cell position. My research is the first to demonstrate the ability of an ephrin ligand to activate its ephrin receptor in cis, and further research can investigate if this finding has in vivo applications.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Since Altmann recognized ubiquitously distributed "bioblasts" in 1890, understanding of mitochondria has evolved from "elementary organisms" living inside cells and carrying out vital functions, over the Harman's "free radical theory" in 1956, to one of the driving forces of aging and cause of multiple associated diseases impacting society today. While a tremendous amount of work has contributed to the understanding of mitochondrial biology in different model organisms, the precise molecular mechanisms of basic mitochondrial function have yet to be deciphered. By employing an RNA interference mediated screen in Caenorhabditis elegans, we identified two transcription factors: SPTF-3, a member of Sp1 family, and an uncharacterized, nematode specific W04D2.4. We propose that both proteins modulate expression of many genes with regard to mitochondrial function including mitochondrial single-stranded binding protein encoded by mtss-1, whose promoter was used as transcriptional reporter in the screen. Further, RNA sequencing data indicate that W04D2.4 indirectly regulates expression of mitochondrial DNA via control of genes functionally related to mitochondrial replication and translation machineries. We also demonstrate that from all interventions targeting cytosolic translation, MTSS-1 levels are elevated only upon knockdown of genes encoding cytosolic ribosomal proteins. Reduction of ribosomes leads to increased sptf-3 translation, most likely in an internal ribosome entry side (IRES) mediated manner, eventually inducing mtss-1 expression. Moreover, we identify a novel role for SPTF-3 in the regulation of mitochondrial unfolded stress response (UPRmt) activation, but not endoplasmatic reticulum or oxidative stress responses. Taken together, this study identifies two transcription factors previously not associated with mitochondrial biogenesis and UPRmt in C. elegans, establishing a basis for further investigation of mito-nuclear interactions.
Resumo:
Heme is an essential cofactor in numerous proteins, but is also cytotoxic. Thus, directed pathways must exist for regulating heme homeostasis. C. elegans is a powerful genetic animal model for elucidating these pathways because it is a heme auxotroph. Worms acquire dietary heme though HRG-1-related importers, and intestinal export was demonstrated to be mediated by the ABC transporter MRP-5. Loss of mrp-5 results in embryonic lethality. Although heme transporters have been identified, there are significant gaps in our understanding for the heme trafficking beyond HRG-1 and MRP-5. To identify additional components, we conducted a forward genetic screen utilizing the null allele mrp-5(ok2067). Screening of 160,000 haploid genomes yielded thirty-two mrp-5(ok2067) suppressor mutants. Deep-sequencing variant analysis revealed three of the suppressors subunits of adapter protein complex 3 (AP-3). We now seek to identify mechanisms for how adaptor protein deficiencies bypass a defect in MRP-5-mediated heme export.
Resumo:
Betalains are plant derived natural pigments that are presently gaining popularity for use as natural colorants in food industry. Although being betalains from red beetroot already used as food colorant (E- 162), these compounds are not as well studied as compared to other natural pigments such as anthocyanins, carotenoids or chlorophylls (I]. Since food additives are on the focus of public interest, it is becoming increasingly important to meet consumers' expectations for natural and healthy products. Hence, the search for new plant-derived colorants for the food industry is still necessary [2]. Betalains were originally called 'nitrogenous anthocyanins', which incorrectly implied structural similarities between the two pigment classes. There are two structurally different types of betalains: the yellow/orange betaxanthins which are the condensation products of betalamic acid and assorted amino compounds, and the red betacyanins which are formed by glycosylation and acylation of cyclo-DOPA [3]. Looking at the chemical structure of the pigment, the addition of an acid to the extraction solvent will increase the affinity of the pigment with the solvent. The aim of this study was to use Gomphrena globosa L. flowers, as an alternative plant source to obtain these pigments and to evaluate the best acid to be used within the extraction procedure. For that purpose three different acids (acetic, hydrochloric and phosphoric acids, all ofthem allowed by the food industry), adjusted at the same pH, were tested during a maceration extraction procedure. After the extraction a purification through C18 column was performed in order to obtain a more concentrate extract in betacyanins. The results were analysed by HPLC-PDA-MSIESI. The betacyanin profile allowed the identification of gomphrenin IIJIII and isogomphrenin IIIIII and the best results were achieved by performing the extraction procedure using hydrochloric acid (6.6 mg/g extract), while phosphoric acid only presented trace amounts of these compounds. When acetic acid was used, the pigment extracted was 6.8 times less (0.97 mg/g extract) when compared to HCI. In conclusion hydrochloric acid can be considered the most suitable acid to be applied in the extraction procedure of these pigments.
Resumo:
Betacyanins are betalain pigments that display a red-violet colour which have been reported to be three times stronger than the red-violet dye produced by anthocyanins [1]. The applications of betacyanins cover a wide range of matrices, mainly as additives or ingredients in the food industry, cosmetics, pharmaceuticals and livestock feed. Although, being less commonly used than anthocyanins and carotenoids, betacyanins are stable between pH 3 to 7 and suitable for colouring in low acid matrices. In addition, betacyanins have been reported to display interesting medicinal character as powerful antioxidant and chemopreventive compounds either in vitro or in vivo models [2]. Betacyanins are obtained mainly from the red beet of Beta vulgaris plant (between I 0 to 20 mg per I 00 g pulp) but alternative primary sources are needed [3]. In addition, independently of the source used, the effect of the variables that affect the extraction of betacyanins have not been properly described and quantified. Therefore, the aim of this study was to identifY and optimize the conditions that maximize betacyanins extraction using the tepals of Gomphrena globosa L. flowers as an alternative source. Assisted by the statistical technique of response surface methodology, an experimental design was developed for testing the significant explanatory variables of the extraction (time, temperature, solid-liquid ratio and ethanolwater ratio). The identification was performed using high-performance liquid chromatography coupled with a photodiode array detector and mass spectrometry with electron spray ionization (HPLC-PDAMS/ ESI) and the response was measured by the quantification of these compounds using HPLC-PDA. Afterwards, a response surface analysis was performed to evaluate the results. The major betacyanin compounds identified were gomphrenin 11 and Ill and isogomphrenin IJ and Ill. The highest total betacyanins content was obtained by using the following conditions: 45 min of extraction. time, 35•c, 35 g/L of solid-liquid ratio and 25% of ethanol. These values would not be found without optimizing the conditions of the betacyanins extraction, which moreover showed contrary trends to what it has been described in the scientific bibliography. More specifically, concerning the time and temperature variables, an increase of both values (from the common ones used in the bibliography) showed a considerable improvement on the betacyanins extraction yield without displaying any type of degradation patterns.
Resumo:
A perceção, as opiniões e os desejos dos consumidores têm um enorme impacto na indústria alimentar. Na perceção visual, a cor torna-se um fator fundamental e, neste campo, os corantes alimentares assumem uma extrema importância. A cor pode ser considerada um dos atributos mais impressionantes dos géneros alimentícios, que influencia diretamente a preferência e a seleção dos consumidores[1]. Existem muitos corantes naturais utilizados na indústria alimentar, tais como carotenóides, antocianinas e betalaínas. As betalaínas incluem compostos com cores que vão do vermelho-violeta (betacianidinas) ao amarelo-laranja (betaxantinas). As betalaínas não têm sido tão extensamente estudadas como as antocianinas, mas possuem uma capacidade corante três-vezes maior. A única betalaína autorizada como corante natural deriva da beterraba(E-162)[2], mas existem outras fontes alternativas de betacianidinas ,como a que se apresenta neste trabalho: Gomphrenaglobosa L., vulgarmente designada por perpétua roxa.
Resumo:
171 p.