997 resultados para Gold-Bearing Iron Duricrusts
Geometry and structural control of gold vein mineralizations in the Serido Belt, northeastern Brazil
Resumo:
Friedreich ataxia (FA) Is caused by decreased frataxin expression that results in mitochondrial iron (Fe) overload. However, the role of frataxin in mammalian Fe metabolism remains unclear. In this investigation we examined the function of frataxin in Fe metabolism by implementing a well-characterized model of erythroid differentiation, namely, Friend cells induced using dimethyl sulfoxide (DMSO). We have characterized the changes in frataxin expression compared to molecules that play key roles in Fe metabolism (the transferrin receptor [TfR] and the Fe transporter Nramp2) and hemoglobinization (beta-globin). DMSO induction of hemoglobinization results in a marked decrease in frataxin gene (Frda) expression and protein levels. To a lesser extent, Nramp2 messenger RNA (mRNA) levels were also decreased on erythroid differentiation, whereas TfR and beta-globin mRNA levels increased. Intracellular Fe depletion using desferrioxamine or pyridoxal isonicotinoyl hydrazone, which chelate cytoplasmic or cytoplasmic and mitochondrial Fe pools, respectively, have no effect on frataxin expression. Furthermore, cytoplasmic or mitochondrial Fe loading of induced Friend cells with ferric ammonium citrate, or the heme synthesis inhibitor, succinylacetone, respectively, also had no effect on frataxin expression. Although frataxin has been suggested by others to be a mitochondrial ferritin, the lack of effect of intracellular Fe levels on frataxin expression is not consistent with an Fe storage role. Significantly, protoporphyrin IX down-regulates frataxin protein levels, suggesting a regulatory role of frataxin in Fe or heme metabolism. Because decreased frataxin expression leads to mitochondrial Fe loading in FA, our data suggest that reduced frataxin expression during erythroid differentiation results in mitochondrial Fe sequestration for heme biosynthesis. (C) 2002 by The American Society of Hematology.
Resumo:
The iron(II) complex [Fe(AMN(3)S(3)sarH)](ClO4)(3).3H(2)O (AMN(3)S(3)sarH = 8-ammonio-1-methyl-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]icosane) has been synthesized and characterized by single crystal structure and spectroscopic methods. The Fe(II)-S(thiaether) bond lengths are short, indicative of a large degree of metal-ligand orbital mixing (pi-acceptor character) of the thiaether ligand. The complex is stable to metal centred oxidation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Nine novel arsenite-oxidizing bacteria have been isolated from two different gold mine environments in Australia. Four of these organisms grow chemolithoautotrophically with oxygen as the terminal electron acceptor, arsenite as the electron donor, and carbon dioxide-bicarbonate as the sole carbon source. Five heterotrophic arsenite-oxidizing bacteria were also isolated, one of which was found to be both phylogenetically and physiologically identical to the previously described heterotrophic arsenite oxidizer misidentified as Alcaligenes faecalis. The results showed that this strain belongs to the genus Achromobacter. Phylogenetically, the arsenite-oxidizing bacteria fall within two separate subdivisions of the Proteobacteria. Interestingly, the chemolithoautotrophic arsenite oxidizers belong to the alpha-Proteobacteria, whereas the heterotrophic arsenite oxidizers belong to the beta-Proteobacteria.
Resumo:
Recently it has been observed that multicopper oxidases are present in a number of microbial genomes, raising the question of their function in prokaryotes. Here we describe the analysis of an mco mutant from the opportunistic pathogen Pseudomonas aeruginosa. Unlike wild-type Pseudomonas aeruginosa, the mco mutant was unable to grow aerobically on minimal media with Fe(II) as sole iron source. In contrast, both the wild-type and mutant strain were able to grow either anaerobically via denitrification with Fe(II) or aerobically with Fe(III). Analysis of iron uptake showed that the mco mutant was impaired in Fe(II) uptake but unaffected in Fe(III) uptake. Purification and analysis of the MCO protein confirmed ferroxidase activity. Taken together, these data show that the mco gene encodes a multicopper oxidase that is involved in the oxidation of Fe(II) to Fe(III) subsequent to its acquisition by the cell. In view of the widespread distribution of the mco gene in bacteria, it is suggested that an iron acquisition mechanism involving multicopper oxidases may be an important and hitherto unrecognized feature of bacterial pathogenicity.
Resumo:
The relationships between catalytic activity of cytochrome P450 2A6 (CYP2A6), polymorphism of CYP2A6 gene, gender and levels of body iron stores were analysed in a sample group of 202 apparently healthy Thais, aged 1947 years. Eleven individuals were found to have high activity of CYP2A6, judged by the relatively large amounts (11.2-14.6 mg) of 7-hydroyxcoumarin (7-OHC) excreted 3 h following administration of 15 mg of coumarin. Ten individuals, however, did not excrete any 7-OHC. Of these 10, four were found to have no CYP2A6 gene (whole gene deletion; CYP2A6*4 allele). The frequency of the CYP2A6 alleles; *1A, *1B and *4 in the whole sample group was 52, 40 and 8% while the frequency of the CYP2A6 gene types; *1A/* 1A, *1A/* 1B, *1B/* 1B, *1A/* 4, *1BI* 4, *4/* 4 was 29, 41, 16, 7, 5 and 2%. Subjects having CYP2A6* 1A/* 1B gene-type group were found to have higher rates of coumarin 7-hydroxylation compared with those of the CYP2A6* 1B/* 1B and CYP2A6* 1A/* 4 gene types. The inter-individual variability in CYP2A6 catalytic activity was therefore attributed in part to the CYP2A6 genetic polymorphism. Variation in CYP2A6 activity in this sample group was not associated with gender but, interestingly, it did show an inverse association with plasma ferritin; an indicator of body iron stores. Higher rates of coumarin 7-hydroxylation were found in individuals with low body iron stores (plasma ferritin < 20 μg/l) compared with subjects having normal body iron store status. Subjects (n = 16) with iron overload (plasma ferritin > 300 mug/l) also tended to have elevated rates of coumarin 7-hydroxylation. These results suggest an increased CYP2A6 expression in subjects who have excessive body iron stores. Further investigations into the underlying factors that may lead to increased expression of CYP2A6 in association with abnormal body iron stores are currently in progress in our laboratory. Pharmacogenetics 12:241-249 (C) 2002 Lippincott Williams Wilkins.
Resumo:
The pseudoternary section FeO-ZnO-(CaO + SiO2) with a CaO/SiO2 weight ratio of 0.71 in equilibrium with metallic iron has been experimentally investigated in the temperature range from 1000 degreesC to 1300 degreesC (1273 to 1573 K). The liquidus surface in this pseudoternary. section has been determined in the composition range of 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2)The system contains primary-phase fields of wustite (FexZn1-xO1+y), zincite (ZnzFe1-zO), fayalite (FewZn2-wSiO4), melilite (Ca2ZnuFe1-uSi2O7), and pseudowollastonite (CaSiO3). The phase equilibria involving the liquid phase and the solid solutions have also been measured.
Resumo:
The grazing trial at Kidston Gold Mine, North Queensland, was aimed specifically to assess the uptake of metals from the tailing and the potential for unacceptable contamination of saleable meat. Further aims included estimating metal dose rates and identifying potential exposure pathways including plant uptake of heavy metals, mine tailings adhered to plants and direct ingestion of mine tailing. It was found that of the 11 metals analysed (As, Zn, Co, Cd, Cr, Sn, Pb, Sb, Hg, Se and Ni) in the animal's liver, muscle and blood during the 8-month trial period, only accumulation of arsenic and zinc occurred. A risk assessment including these two metals was conducted to determine the potential for chronic metal toxicity and long-term contamination, using the estimates of metal dose rate. It was concluded that no toxicity or long-term contamination in cattle was likely at this site. Management procedures were therefore not required at this site; however, the results highlight percent ground cover and standing dry matter (DM) as important factors in decreasing metal exposure from direct ingestion of tailings and dust adhered to plants. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.
Resumo:
Background/Aims: Concordance of iron indices between same sex siblings homozygous for the cysteine-to-tyrosine substitution at amino acid 282 (C282Y) mutation suggests that the variable phenotype in hereditary hemochromatosis is caused by genetic factors. Concordance of iron indices between same-sex heterozygous sibling pairs would provide further evidence of genetic modifiers of disease expression, and guidance for family screening strategies of subjects heterozygous for the C282Y mutation. Methods: We compared the iron indices of 35 C282Y homozygous and 35 C282Y heterozygous same-sex sibling pairs. To clarify whether concordance between siblings was due to environmental or genetic factors we compared the iron indices of 164 C282Y homozygous-normal, same-sex dizygotic twins. Results: Serum ferritin (r = 0.50, P = 0.003), hepatic iron concentration (r = 0.61, P = 0.025) and hepatic iron index (r = 0.67, P = 0.01) were highly concordant in C282Y homozygotes. Heterozygote siblings were concordant for serum ferritin (r = 0.76, P = 0.0001) and transferrin saturation (r = 0.79, P = 0.0001). Homozygote-normal same-sex dizygotic twins were concordant for serum ferritin (r = 0.62, P = 0.0001) but not for transferrin saturation. Conclusions: Concordance of iron indices exists in C282Y homozygote and heterozygote sibling pairs. Siblings of expressing C282Y heterozygotes require phenotypic assessment. These data provide evidence for modifying genes influencing disease expression in hemochromatosis. (C) 2002 European Association for the Study of the Liver. Published by Elsevier Science B.V. All rights reserved.