933 resultados para Glycosylated hemoglobin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cohort of 59 persons with industrial handling of low levels of acrylonitrile is being studied as part of a medical surveillance programme. Previously, an extended haemoglobin adduct monitoring (N-(cyanoethyl)valine and N-(hydroxyethyl)-valine) was performed regarding the glutathione transferases hGSTM1 and hGSTT1 polymorphisms but no influence of hGSTM1 or hGSTT1 polymorphisms on specific adduct levels was found. A compilation of case reports of human accidental poisonings had pointed to significant individual differences in human acrylonitrile metabolism and toxicity. Therefore, a re-evaluation of the industrial cohort included known polymorphisms of the glutathione transferases hGSTM3 and hGSTP1 as well as of the cytochrome P450 CYP2E1. A detailed statistical analysis revealed that exposed carriers of the allelic variants of hGSTP1, hGSTP1*B/hGSTP1*C, characterized by a single nucleotide polymorphism at nucleotide 313 which results in a change from Ile to Val at codon 104, had higher levels of the acrylonitrile-specific haemoglobin adduct N-(cyanoethyl)valine compared to the carriers of the codon 113 alleles hGSTP1*A and hGSTP1*D. The single nucleotide polymorphism at codon 113 of hGSTP1 (hGSTP1*A/hGSTP1*B versus hGSTP1*C/hGSTP1*D) did not show an effect, and also no influence was seen on specific haemoglobin adduct levels of the polymorphisms of hGSTM3 or CYP2E1. The data, therefore, point to a possible influence of a human enzyme polymorphism of the GSTP1 gene at codon 104 on the detoxication of acrylonitrile which calls for experimental toxicological investigation. The study also confirmed the impact of GSTT1 polymorphism on background N-(hydroxyethyl)-valine adduct levels in haemoglobin which are caused by endogenous ethylene oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term inhalation studies in rodents have presented unequivocal evidence of experimental carcinogenicity of ethylene oxide, based on the formation of malignant tumors at multiple sites. However, despite a considerable body of epidemiological data only limited evidence has been obtained of its carcinogenicity in humans. Ethylene oxide is not only an important exogenous toxicant, but it is also formed from ethylene as a biological precursor. Ethylene is a normal body constituent; its endogenous formation is evidenced by exhalation in rats and in humans. Consequently, ethylene oxide must also be regarded as a physiological compound. The most abundant DNA adduct of ethylene oxide is 7-(2-hydroxyethyl)guanine (HOEtG). Open questions are the nature and role of tissue-specific factors in ethylene oxide carcinogenesis and the physiological and quantitative role of DNA repair mechanisms. The detection of remarkable individual differences in the susceptibility of humans has promoted research into genetic factors that influence the metabolism of ethylene oxide. With this background it appears that current PBPK models for trans-species extrapolation of ethylene oxide toxicity need to be refined further. For a cancer risk assessment at low levels of DNA damage, exposure-related adducts must be discussed in relation to background DNA damage as well as to inter- and intraindividual variability. In rats, subacute ethylene oxide exposures on the order of 1 ppm (1.83 mg/m3) cause DNA adduct levels (HOEtG) of the same magnitude as produced by endogenous ethylene oxide. Based on very recent studies the endogenous background levels of HOEtG in DNA of humans are comparable to those that are produced in rodents by repetitive exogenous ethylene oxide exposures of about 10 ppm (18.3 mg/m3). Experimentally, ethylene oxide has revealed only weak mutagenic effects in vivo, which are confined to higher doses. It has been concluded that long-term human occupational exposure to low airborne concentrations to ethylene oxide, at or below current occupational exposure limits of 1 ppm (1.83 mg/m3), would not produce unacceptable increased genotoxic risks. However, critical questions remain that need further discussions relating to the coherence of animal and human data of experimental data in vitro vs. in vivo and to species-specific dynamics of DNA lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N- (methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/1 blood; 6.7 and 6.7 μg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high priority of monitoring workers exposed to nitrobenzene is a consequence of clear findings of experimental carcinogenicity of nitrobenzene and the associated evaluations by the International Agency for Research on Cancer. Eighty male employees of a nitrobenzene reduction plant, with potential skin contact with nitrobenzene and aniline, participated in a current medical surveillance programme. Blood samples were routinely taken and analysed for aniline, 4-aminodiphenyl (4-ADP) and benzidine adducts of haemoglobin (Hb) and human serum albumin (HSA). Also, levels of methaemoglobin (Met-Hb) and of carbon monoxide haemoglobin (CO-Hb) were monitored. Effects of smoking were straightforward. Using the rank sum test of Wilcoxon, we found that very clear-cut and statistically significant smoking effects (about 3-fold increases) were apparent on CO-Hb (P = 0.00085) and on the Hb adduct of 4-ADP (P = 0.0006). The mean aniline-Hb adduct level in smokers was 1.5 times higher than in non-smokers; the significance (P = 0.05375) was close to the 5% level. The strongest correlation was evident between the Hb and HSA adducts of aniline (rs = 0.846). Less pronounced correlations (but with P values < 0.02) appeared between aniline-Hb and 4-ADP-Hb adducts (rs = 0.388), between 4-ADP and 4-ADP-HSA adducts (rs = 0.373), and between 4-ADP-Hb and aniline-HSA adducts (rs = 0.275). In view of the proposal for additional use of the aniline-HSA adduct for biological monitoring, particularly in cases of acute overexposures or poisonings, the strong correlation of the Hb and HSA conjugates is noteworthy; the ratio aniline-HSA:aniline-Hb was 1:42 for the entire cohort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In view of the established extrapulmonary cancer sites targeted by smoking a multiplicity of compounds, and mechanisms might be involved. It has been debated that smoking caused increased incidence of N-methylvaline at the N-terminus of haemoglobin. Because this could indicate a relevance of methylating nitrosamines in tobacco smoke, data are presented from an industrial cohort of 35 smokers and 21 non-smokers repeatedly monitored between 1994 and 1999. In general, N-methylvaline adduct levels in haemoglobin of smokers were approximately 50% higher than those of non-smokers. The smoking-induced methylation of haemoglobin is likely to be caused by dimethylnitrosamine (N-nitroso-dimethylamine), a major nitrosamine in side-stream tobacco smoke. The biomonitoring data emphasise the potential value of N-methylvaline as a smoking-related biomarker and call for intensified research on tobacco smoke compounds that lead to macromolecular methylation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Case reports of human accidental poisonings point to significant individual differences in human acrylonitrile metabolism and toxicity. A cohort of 59 persons with industrial handling of low levels of acrylonitrile has repetitively been studied from 1994 through 1999 as part of a medical surveillance programme. The analyses included adduct determinations of N-terminal N-(cyanoethyl)valine in haemoglobin and genotypings of the following cytochrome P-450 2E1 (CYP2E1) polymorphisms: G-1259C and C-1019T (two subjects heterozygous), A-316G (three subjects heterozygous), T-297A (15 subjects heterozygous), G-35T (eight subjects heterozygous), G4804A (two subjects heterozygous), T7668A (six subjects heterozygous). N-(Cyanoethyl)valine adduct levels were, if any, only slightly influenced by smoking and mainly determined by the external acrylonitrile exposures. The individual means and medians of N-(cyanoethyl)valine levels over the entire observation period were compared with the CYP2E1 variants (Wilcoxon rank sum test). No influences of the investigated CYP2E1 polymorphisms on the N-(cyanoethyl)valine levels appeared at the 5% level. However, there was a trend, at a level of P≃0.1, pointing to higher acrylonitrile-specific adduct levels in persons with the A-316G mutation. Higher adduct levels would be compatible with a slower CYP2E1-mediated metabolism of acrylonitrile and with lower extents of toxification to cyanide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The use of nonstandardized N-terminal pro-B-type natriuretic peptide (NT-proBNP) assays can contribute to the misdiagnosis of heart failure (HF). Moreover, there is yet to be established a common consensus regarding the circulating forms of NT-proBNP being used in current assays. We aimed to characterize and quantify the various forms of NT-proBNP in the circulation of HF patients. METHODS: Plasma samples were collected from HF patients (n = 20) at rest and stored at -80 degrees C. NT-proBNP was enriched from HF patient plasma by use of immunoprecipitation followed by mass spectrometric analysis. Customized homogeneous sandwich AlphaLISA (R) immunoassays were developed and validated to quantify 6 fragments of NT-proBNP. RESULTS: Mass spectrometry identified the presence of several N- and C-terminally processed forms of circulating NT-proBNP, with physiological proteolysis between Pro2-Leu3, Leu3-Gly4, Pro6-Gly7, and Pro75-Arg76. Consistent with this result, AlphaLISA immunoassays demonstrated that antibodies targeting the extreme N or C termini measured a low apparent concentration of circulating NT-proBNP. The apparent circulating NT-proBNP concentration was increased with antibodies targeting nonglycosylated and nonterminal epitopes (P < 0.05). CONCLUSIONS: In plasma collected from HF patients, immunoreactive NT-proBNP was present as multiple N- and C-terminally truncated fragments of the full length NT-proBNP molecule. Immunodetection of NT-proBNP was significantly improved with the use of antibodies that did not target these terminal regions. These findings support the development of a next generation NT-proBNP assay targeting nonterminal epitopes as well as avoiding the central glycosylated region of this molecule. (c) 2013 American Association for Clinical Chemistry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE Diseases including cancer and congenital disorders of glycosylation have been associated with changes in the site-specific extent of protein glycosylation. Saliva can be non-invasively sampled and is rich in glycoproteins, giving it the potential to be a useful biofluid for the discovery and detection of disease biomarkers associated with changes in glycosylation. METHODS Saliva was collected from healthy individuals and glycoproteins were enriched using phenylboronic acid based glycoprotein enrichment resin. Proteins were deglycosylated with peptide-N-glycosidase F and digested with AspN or trypsin. Desalted peptides and deglycosylated peptides were separated by reversed-phase liquid chromatography and detected with on-line electrospray ionization quadrupole-time-of-flight mass spectrometry using a 5600 TripleTof instrument. Site-specific glycosylation occupancy was semi-quantitatively determined from the abundance of deglycosylated and nonglycosylated versions of each given peptide. RESULTS Glycoprotein enrichment identified 67 independent glycosylation sites from 24 unique proteins, a 3.9-fold increase in the number of glycosylation sites identified. Enrichment of glycoproteins rather than glycopeptides allowed detection of both deglycosylated and nonglycosylated versions of each peptide, and thereby robust measurement of site-specific occupancy at 21 asparagines. Healthy individuals showed limited biological variability in occupancy, with partially modified sites having characteristics consistent with inefficient glycosylation by oligosaccharyltransferase. Inclusion of negative controls without enzymatic deglycosylation controlled for spontaneous chemical deamidation, and identified asparagines previously incorrectly annotated as glycosylated. CONCLUSIONS We developed a sample preparation and mass spectrometry detection strategy for rapid and efficient measurement of site-specific glycosylation occupancy on diverse salivary glycoproteins suitable for biomarker discovery and detection of changes in glycosylation occupancy in human disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Inhibitors of the sodium-glucose co-transporter 2 (SGLT2) promote the excretion of glucose to reduce glycated hemoglobin (HbA1c) levels. Canagliflozin was the first SGLT2 inhibitor to be approved by the US FDA for use in the treatment of type 2 diabetes, and recently dapagliflozin has also been approved. AREAS COVERED: We evaluated a recent Phase III clinical trial with dapagliflozin. EXPERT OPINION: Dapagliflozin was studied as add-on therapy to sitagliptin with or without metformin, and was shown to lower HbA1c levels and body weight. The incidence of hypoglycaemia was low with dapagliflozin, but it did increase the incidence of urogenital infections. As no clear benefits have been identified for dapagliflozin over canagliflozin, which was the first gliflozin registered by the FDA, we do not fully understand why it was necessary to register dapagliflozin. Given that there are no completed cardiovascular/clinical outcome studies with dapagliflozin, and therefore no evidence of beneficial effect, it also seems premature to be using it extensively or considering it as an alternative to the clinically proven metformin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The prevalence of type 2 diabetes is rising with the majority of patients practicing inadequate disease self-management. Depression, anxiety, and diabetes-specific distress present motivational challenges to adequate self-care. Health systems globally struggle to deliver routine services that are accessible to the entire population, in particular in rural areas. Web-based diabetes self-management interventions can provide frequent, accessible support regardless of time and location Objective: This paper describes the protocol of an Australian national randomized controlled trial (RCT) of the OnTrack Diabetes program, an automated, interactive, self-guided Web program aimed to improve glycemic control, diabetes self-care, and dysphoria symptoms in type 2 diabetes patients. Methods: A small pilot trial is conducted that primarily tests program functionality, efficacy, and user acceptability and satisfaction. This is followed by the main RCT, which compares 3 treatments: (1) delayed program access: usual diabetes care for 3 months postbaseline followed by access to the full OnTrack Diabetes program; (2) immediate program: full access to the self-guided program from baseline onward; and (3) immediate program plus therapist support via Functional Imagery Training (FIT). Measures are administered at baseline and at 3, 6, and 12 months postbaseline. Primary outcomes are diabetes self-care behaviors (physical activity participation, diet, medication adherence, and blood glucose monitoring), glycated hemoglobin A1c (HbA1c) level, and diabetes-specific distress. Secondary outcomes are depression, anxiety, self-efficacy and adherence, and quality of life. Exposure data in terms of program uptake, use, time on each page, and program completion, as well as implementation feasibility will be conducted. Results: This trial is currently underway with funding support from the Wesley Research Institute in Brisbane, Australia. Conclusions: This is the first known trial of an automated, self-guided, Web-based support program that uses a holistic approach in targeting both type 2 diabetes self-management and dysphoria. Findings will inform the feasibility of implementing such a program on an ongoing basis, including in rural and regional locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.