914 resultados para Global climate changes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-range global climate forecasts have been made by use of a model for predicting a tropical Pacific sea surface temperature (SST) in tandem with an atmospheric general circulation model. The SST is predicted first at long lead times into the future. These ocean forecasts are then used to force the atmospheric model and so produce climate forecasts at lead times of the SST forecasts. Prediction of the wintertime 500 mb height, surface air temperature and precipitation for seven large climatic events of the 1970–1990s by this two-tiered technique agree well in general with observations over many regions of the globe. The levels of agreement are high enough in some regions to have practical utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low-frequency variability which can look “trend-like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone-depleting substances and greenhouse gases on both ozone and climate. While the radiative-chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer-Dobson circulation) could have a first-order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry-climate models have recently emerged as useful tools for addressing these questions, as they provide a self-consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamical downscaling of Global Climate Models (GCMs) through regional climate models (RCMs) potentially improves the usability of the output for hydrological impact studies. However, a further downscaling or interpolation of precipitation from RCMs is often needed to match the precipitation characteristics at the local scale. This study analysed three Model Output Statistics (MOS) techniques to adjust RCM precipitation; (1) a simple direct method (DM), (2) quantile-quantile mapping (QM) and (3) a distribution-based scaling (DBS) approach. The modelled precipitation was daily means from 16 RCMs driven by ERA40 reanalysis data over the 1961–2000 provided by the ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts) project over a small catchment located in the Midlands, UK. All methods were conditioned on the entire time series, separate months and using an objective classification of Lamb's weather types. The performance of the MOS techniques were assessed regarding temporal and spatial characteristics of the precipitation fields, as well as modelled runoff using the HBV rainfall-runoff model. The results indicate that the DBS conditioned on classification patterns performed better than the other methods, however an ensemble approach in terms of both climate models and downscaling methods is recommended to account for uncertainties in the MOS methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of ‘teleconnection’ between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20–10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated 14C ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of possible changes in the frequency and characteristics of European wind storms under future climate conditions was investigated on the basis of a multi-model ensemble of 9 coupled global climate model (GCM) simulations for the 20th and 21st centuries following the IPCC SRES A1B scenario. A multi-model approach allowed an estimation of the (un)certainties of the climate change signals. General changes in large-scale atmospheric flow were analysed, the occurrence of wind storms was quantified, and atmospheric features associated with wind storm events were considered. Identified storm days were investigated according to atmospheric circulation, associated pressure patterns, cyclone tracks and wind speed patterns. Validation against reanalysis data revealed that the GCMs are in general capable of realistically reproducing characteristics of European circulation weather types (CWTs) and wind storms. Results are given with respect to frequency of occurrence, storm-associated flow conditions, cyclone tracks and specific wind speed patterns. Under anthropogenic climate change conditions (SRES A1B scenario), increased frequency of westerly flow during winter is detected over the central European investigation area. In the ensemble mean, the number of detected wind storm days increases between 19 and 33% for 2 different measures of storminess, only 1 GCM revealed less storm days. The increased number of storm days detected in most models is disproportionately high compared to the related CWT changes. The mean intensity of cyclones associated with storm days in the ensemble mean increases by about 10 (±10)% in the Eastern Atlantic, near the British Isles and in the North Sea. Accordingly, wind speeds associated with storm events increase significantly by about 5 (±5)% over large parts of central Europe, mainly on days with westerly flow. The basic conclusions of this work remain valid if different ensemble contructions are considered, leaving out an outlier model or including multiple runs of one particular model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the availability of hemispheric gridded data sets from observations, analysis and global climate models, objective cyclone identification methods were developed and applied to these data sets. Due to the large amount of investigation methods combined with the variety of different datasets, a multitude of results exist, not only for the recent climate period but also for the next century, assuming anthropogenic changed conditions. Different thresholds, different physical quantities, and considerations of different atmospheric vertical levels add to a picture that is difficult to combine into a common view of cyclones, their variability and trends, in the real world and in GCM studies. Thus, this paper will give a comprehensive review of the actual knowledge on climatologies of mid-latitude cyclones for the Northern and Southern Hemisphere for the present climate and for its possible changes under anthropogenic climate conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Winter storm-track activity over the Northern Hemisphere and its changes in a greenhouse gas scenario (the Special Report on Emission Scenarios A1B forcing) are computed from an ensemble of 23 single runs from 16 coupled global climate models (CGCMs). All models reproduce the general structures of the observed climatological storm-track pattern under present-day forcing conditions. Ensemble mean changes resulting from anthropogenic forcing include an increase of baroclinic wave activity over the eastern North Atlantic, amounting to 5%–8% by the end of the twenty-first century. Enhanced activity is also found over the Asian continent and over the North Pacific near the Aleutian Islands. At high latitudes and over parts of the subtropics, activity is reduced. Variations of the individual models around the ensemble average signal are not small, with a median of the pattern correlation near r = 0.5. There is, however, no evidence for a link between deviations in present-day climatology and deviations with respect to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the warm conveyor belt of extra-tropical cyclones, atmospheric rivers (ARs) are the key synoptic features which deliver the majority of poleward water vapour transport, and are associated with episodes of heavy and prolonged rainfall. ARs are responsible for many of the largest winter floods in the mid-latitudes resulting in major socioeconomic losses; for example, the loss from United Kingdom (UK) flooding in summer/winter 2012 is estimated to be about $1.6 billion in damages. Given the well-established link between ARs and peak river flows for the present day, assessing how ARs could respond under future climate projections is of importance in gauging future impacts from flooding. We show that North Atlantic ARs are projected to become stronger and more numerous in the future scenarios of multiple simulations from five state-of-the-art global climate models (GCMs) in the fifth Climate Model Intercomparison Project (CMIP5). The increased water vapour transport in projected ARs implies a greater risk of higher rainfall totals and therefore larger winter floods in Britain, with increased AR frequency leading to more flood episodes. In the high emissions scenario (RCP8.5) for 2074–2099 there is an approximate doubling of AR frequency in the five GCMs. Our results suggest that the projected change in ARs is predominantly a thermodynamic response to warming resulting from anthropogenic radiative forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5—4.5°C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850), but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarize attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question: What are the correlations between the degree of drought stress and temperature, and the adoption of specific adaptive strategies by plants in the Mediterranean region? Location: 602 sites across the Mediterranean region. Method: We considered 12 plant morphological and phenological traits, and measured their abundance at the sites as trait scores obtained from pollen percentages. We conducted stepwise regression analyses of trait scores as a function of plant available moisture (α) and winter temperature (MTCO). Results: Patterns in the abundance for the plant traits we considered are clearly determined by α, MTCO or a combination of both. In addition, trends in leaf size, texture, thickness, pubescence and aromatic leaves and other plant level traits such as thorniness and aphylly, vary according to the life form (tree, shrub, forb), the leaf type (broad, needle) and phenology (evergreen, summer-green). Conclusions: Despite conducting this study based on pollen data we have identified ecologically plausible trends in the abundance of traits along climatic gradients. Plant traits other than the usual life form, leaf type and leaf phenology carry strong climatic signals. Generally, combinations of plant traits are more climatically diagnostic than individual traits. The qualitative and quantitative relationships between plant traits and climate parameters established here will help to provide an improved basis for modelling the impact of climate changes on vegetation and form a starting point for a global analysis of pollen-climate relationships