917 resultados para Giant Toad
Resumo:
Corneal endothelial cells from normal and traumatized human, primate, cat and rabbit eyes were studied by specular microscopy. Morphometric analysis was performed on micrographs of corneal endothelium using a semi-automated image analysis system. The results showed that under normal conditions the corneal endothelium of all four species exhibit major morphological similarities (mean cell areas: human 317 +/- 32 microns 2, primate 246 +/- 22 microns2, cat 357 +/- 25 microns 2, rabbit 308 +/- 35 microns 2). The normal corneal endothelium in man was found to be more polymegethous than that of the other species. Trauma to cat, primate and human corneas resulted in a long-term reduction in endothelial cell density and enhanced polymegethism. In contrast, the reparative response of the rabbit ensured the reformation of an essentially normal monolayer following injury. Endothelial giant cells were a normal inclusion in the rabbit corneal endothelium but were only significant in cat, primate and man following trauma. The presence of corneal endothelial giant cells in amitotic corneas may therefore represent a compensatory response in the absence of mitotic potential.
Resumo:
Empirical studies of the spatiotemporal dynamics of populations are required to better understand natural fluctuations in abundance and reproductive success, and to better target conservation and monitoring programmes. In particular, spatial synchrony in amphibian populations remains little studied. We used data from a comprehensive three year study of natterjack toad Bufo calamita populations breeding at 36 ponds to assess whether there was spatial synchrony in the toad breeding activity (start and length of breeding season, total number of egg strings) and reproductive success (premetamorphic survival and production of metamorphs). We defined a novel approach to assess the importance of short-term synchrony at both local and regional scales. The approach employs similarity indices and quantifies the interaction between the temporal and spatial components of populations using mixed effects models. There was no synchrony in the toad breeding activity and reproductive success at the local scale, suggesting that populations function as individual clusters independent of each other. Regional synchrony was apparent in the commencement and duration of the breeding season and in the number of egg strings laid (indicative of female population size). Regional synchrony in both rainfall and temperature are likely to explain the patterns observed (e.g. Moran effect). There was no evidence supporting regional synchrony in reproductive success, most likely due to spatial variability in the environmental conditions at the breeding ponds, and to differences in local population fitness (e.g. fecundity). The small scale asynchronous dynamics and regional synchronous dynamics in the number of breeding females indicate that it is best to monitor several populations within a subset of regions. Importantly, variations in the toad breeding activity and reproductive success are not synchronous, and it is thus important to consider them both when assessing the conservation status of pond-breeding amphibians. © 2012 The Authors. Ecography © 2012 Nordic Society Oikos.
Resumo:
A giant retinal tear (GRT) is a full-thickness neurosensory retinal break that extends circumferentially around the retina for three or more clock hours in the presence of a posteriorly detached vitreous. Its incidence in large population-based studies has been estimated as 1.5% of rhegmatogenous retinal detachments, with a significant male preponderance, and bilaterality in 12.8%. Most GRTs are idiopathic, with trauma, hereditary vitreoretinopathies and high myopia each being causative in decreasing frequency. The vast majority of GRTs are currently managed with a pars plana vitrectomy; the use of adjunctive circumferential scleral buckling is debated, but no studies have shown a clear anatomical or visual advantage with its use. Similarly, silicone oil tamponade does not influence long-term outcomes when compared with gas. Primary and final retinal reattachment rates are achieved in 88% and 95% of patients, respectively. Even when the retina remains attached, however, visual recovery may be limited. Furthermore, fellow eyes of patients with a GRT are at higher risk of developing retinal tears and retinal detachment. Prophylactic treatment under these circumstances may be considered but there is no firm evidence of its efficacy at the present time.
Resumo:
The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.
Resumo:
Background: The purpose of this study is to describe the nature of cases undergoing temporal artery biopsy (TAB) for suspected giant cell arteritis (GCA). Methods: A retrospective review of case notes was undertaken for all patients on whom ophthalmologists had performed TAB in 2 teaching hospitals between 1995 and 2001. Presenting symptoms, referring specialty, TAB result, treatment, and discharge diagnosis were recorded. Results: Ophthalmologists performed TAB on 110 patients for suspected GCA. A variety of specialties referred patients to ophthalmology for TAB; presenting symptoms varied with referral source. Of the 110 TABs, 21 (19%) were reported as positive for GCA, 84 (76%) were negative, and 5 (4.5%) were reported as inadequate. The symptoms most commonly associated with a positive TAB were visual disturbance (15/21) and headache (15/21).The odds ratios for having a positive TAB result rather than a negative result were 1.0 for the presence of headache, 4.1 for visual disturbance, and 6.7 for jaw claudication. Interpretation: Physicians were faced with a different population of GCA suspects than ophthalmologists. While physicians should be alert to the significance of visual symptoms or jaw claudication, ophthalmologists should be ready to facilitate prompt TABs when appropriate. TAB should be performed promptly and an adequate length of artery taken for biopsy. An argument can be made that TAB is not needed in cases of suspected GCA. However, a positive result provides firm justification for the use of steroids. We feel that TAB has a useful role and we make reference to methods to maximize its usefulness.
Resumo:
Feleucins-BV1 and -BV2 are recently-described prototypes of a novel antimicrobial nonapeptide (AMP) family identified in the skin secretion of the bombinid toad, Bombina variegata. They are encoded on different precursors that also encode a novel bombinin. Here we describe the identification of feleucin-BO1 (FLGLLGSLLamide) which is co-encoded with a different novel bombinin, named feleucin precursor-associated bombinin (FPA-bombinin-BO), from the skin secretion of Bombina orientalis. Synthetic feleucin-BO1 displayed activity against a reference Gram-positive bacterium. Staphylococcus aureus (MIC 34 μM) but was inactive (> 250 μM) against the Gram-negative bacterium, Escherichia coli, and the yeast, Candida albicans. This pattern of activity was similar to that of the prototypes. Design and synthesis of a cationicity-enhanced analogue, feleucin-K3 (F-K3), in which the amino acid residues at positions 3 (G), 6 (G) and 7 (S) of feleucin-BO1 were substituted with Lys (K) residues, resulted in a peptide with significantly-enhanced potency and spectrum of activity. The MICs of F-K3 against the reference microorganisms were 7 μM (S. aureus), 14 μM (E. coli) and 7 μM (C. albicans). These data indicate that the skin secretions of amphibians can continue to provide novel peptide templates for the rational design of analogues with possible therapeutic utility.
Resumo:
Amphiphysin is a protein enriched at mammalian synapses thought to function as a clathrin accessory factor in synaptic vesicle endocytosis. Here we examine the involvement of amphiphysin in synaptic vesicle recycling at the giant synapse in the lamprey. We show that amphiphysin resides in the synaptic vesicle cluster at rest and relocates to sites of endocytosis during synaptic activity. It accumulates at coated pits where its SH3 domain, but not its central clathrin/AP-2-binding (CLAP) region, is accessible for antibody binding. Microinjection of antibodies specifically directed against the CLAP region inhibited recycling of synaptic vesicles and caused accumulation of clathrin-coated intermediates with distorted morphology, including flat patches of coated presynaptic membrane. Our data provide evidence for an activity-dependent redistribution of amphiphysin in intact nerve terminals and show that amphiphysin is a component of presynaptic clathrin-coated intermediates formed during synaptic vesicle recycling.
Resumo:
Driver mutations in the two histone 3.3 (H3.3) genes, H3F3A and H3F3B, were recently identified by whole genome sequencing in 95% of chondroblastoma (CB) and by targeted gene sequencing in 92% of giant cell tumour of bone (GCT). Given the high prevalence of these driver mutations, it may be possible to utilise these alterations as diagnostic adjuncts in clinical practice. Here, we explored the spectrum of H3.3 mutations in a wide range and large number of bone tumours (n 5 412) to determine if these alterations could be used to distinguish GCT from other osteoclast-rich tumours such as aneurysmal bone cyst, nonossifying fibroma, giant cell granuloma, and osteoclast-rich malignant bone tumours and others. In addition, we explored the driver landscape of GCT through whole genome, exome and targeted sequencing (14 gene panel). We found that H3.3 mutations, namely mutations of glycine 34 in H3F3A, occur in 96% of GCT. We did not find additional driver mutations in GCT, including mutations in IDH1, IDH2, USP6, TP53. The genomes of GCT exhibited few somatic mutations, akin to the picture seen in CB. Overall our observations suggest that the presence of H3F3A p.Gly34 mutations does not entirely exclude malignancy in osteoclast-rich tumours. However, H3F3A p.Gly34 mutations appear to be an almost essential feature of GCT that will aid pathological evaluation of bone tumours, especially when confronted with small needle core biopsies. In the absence of H3F3A p.Gly34 mutations, a diagnosis of GCT should be made with caution.
Resumo:
It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B, which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A, leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions.