965 resultados para Geological statistics
Resumo:
In this article, the fusion of a stochastic metaheuristic as Simulated Annealing (SA) with classical criteria for convergence of Blind Separation of Sources (BSS), is shown. Although the topic of BSS, by means of various techniques, including ICA, PCA, and neural networks, has been amply discussed in the literature, to date the possibility of using simulated annealing algorithms has not been seriously explored. From experimental results, this paper demonstrates the possible benefits offered by SA in combination with high order statistical and mutual information criteria for BSS, such as robustness against local minima and a high degree of flexibility in the energy function.
Resumo:
Conferència Organitzada per l'Escola Politècnica Superior, Universitat de Vic en col·laboració amb Servei d'Estadística de la Universitat Autònoma de Barcelona i CosmoCaixa Barcelona. Celebrada del 18 al 22 de juny de 2012 a Barcelona
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.