989 resultados para Geochemical prospecting.
Resumo:
During Leg 195 of the Ocean Drilling Program, Site 1202 was drilled in the subtropical northwestern Pacific Ocean beneath the Kuroshio (Black Current) between northern Taiwan and the Ryukyu Island Arc on the northern flank of the I-Lan Ridge at 1274 m water depth. The upper 110 m of the Site 1202 section, composed of dark grey calcareous silty clay, provide an expanded record of environmental changes during the last 28 kyr. The sediments were deposited at high sedimentation rates between 3.0 and 5.0 m/kyr and peak values of 9.0 m/kyr between 15.1 and 11.2 ka BP. Variations in the modes and sources of detrital sediment input, as inferred from sediment granulometry, mineralogy, and elemental XRF-scanner data, reflect changes in environmental boundary conditions related to sea-level changes, Kuroshio variability, and the climate-driven modes of fluvial runoff. The provenance data point to increased sediment supply from northwestern Taiwan between 28 and 19.5 ka BP and from East China sources between 19.5 and 11.2 ka BP. The change in provenance at 19.5 ka BP reflects increased fluvial runoff from the Yangtze River and strong sediment reworking from the East China Sea shelf in the course of increased humidity and postglacial sea-level rise, particularly after 15.1 ka BP. The Holocene was dominated by sediments that originated from rivers in northeastern Taiwan. For the pre-Holocene period prior to 11.2 ka BP, low portions of sortable silt (63-10 ?m) show that the Kuroshio did not enter the Okinawa Trough, because of low sea-level. In turn, high proportions of sortable silt and sediment provenance from northeastern Taiwan point to strong ocean circulation under the direct and persistent influence of the Kuroshio during the Holocene. The reentrance of the Kuroshio to the Okinawa Trough was heralded by two pulses in relative current strengthening at 11.2 and 9.5 ka BP, as documented by stepwise increases in sortable silt in the lower Holocene section. From a global perspective, environmental changes in the southern Okinawa Trough show affinities to climate change in the western Pacific warm pool with little influence of climate teleconnections from the North Atlantic realm, otherwise seen in many other marine and terrestrial palaeoclimate records from southeastern Asia.
Resumo:
The Sr and Nd isotopic composition of dust extracted from recent snow layers at the top of Berkner Island ice sheet (located within the Filchner-Ronne Ice Shelf at the southern end of the Weddell Sea) enables us, for the first time, to document dust provenance in Antarctica outside the East Antarctic Plateau (EAP) where all previous studies based on isotopic fingerprinting were carried out. Berkner dust displays an overall crust-like isotopic signature, characterized by more radiogenic 87Sr/86Sr and much less radiogenic 143Nd/144Nd compared to dust deposited on the EAP during glacial periods. Differences with EAP interglacial dust are not as marked but still significant, indicating that present-day Berkner dust provenance is distinct, at least to some extent, from that of the dust reaching the EAP. The fourteen snow-pit sub-seasonal samples that were obtained span a two-year period (2002-2003) and their dust Sr and Nd isotopic composition reveals that multiple sources are at play over a yearly time period. Southern South America, Patagonia in particular, likely accounts for part of the observed spring/summer dust deposition maxima, when isotopic composition is shifted towards 'younger' isotopic signatures. In the spring, possible additional inputs from Australian sources would also be supported by the data. Most of the year, however, the measured isotopic signatures would be best explained by a sustained background supply from putative local sources in East Antarctica, which carry old-crust-like isotopic fingerprints. Whether the restricted East Antarctic ice-free areas produce sufficient eolian material has yet to be substantiated however. The fact that large (> 5 µm) particles represent a significant fraction of the samples throughout the entire time-series supports scenarios that involve contributions from proximal sources, either in Patagonia and/or Antarctica (possibly including snow-free areas in the Antarctic Peninsula and other areas as well). This also indicates that additional dust transport, which does not reach the EAP, must occur at low-tropospheric levels to this coastal sector of Antarctica.
Resumo:
A multivariable approach utilising bulk sediment, planktonic Foraminifera and siliceous phytoplankton has been used to reconstruct rapid variations in palaeoproductivity in the Peru-Chile Current System off northern Chile for the past 19000 cal. yr. During the early deglaciation (19000-16000 cal. yr BP), our data point to strongest upwelling intensity and highest productivity of the past 19 000 cal. yr. The late deglaciation (16000-13000 cal. yr BP) is characterised by a major change in the oceanographic setting, warmer water masses and weaker upwelling at the study site. Lowest productivity and weakest upwelling intensity are observed from the early to the middle Holocene (13000-4000 cal. yr BP), and the beginning of the late Holocene (<4000 cal. yr BP) is marked by increasing productivity, mainly driven by silicate-producing organisms. Changes in the productivity and upwelling intensity in our record may have resulted from a large-scale compression and/or displacement of the South Pacific subtropical gyre during more productive periods, in line with a northward extension of the Antarctic Circumpolar Current and increased advection of Antarctic water masses with the Peru-Chile Current. The corresponding increase in hemispheric thermal gradient and wind stress induced stronger upwelling. During the periods of lower productivity, this scenario probably reversed.
Resumo:
The book presents results of comprehensive geological investigations carried out during Cruise 8 of R/V "Vityaz-2" to the western part of the Black Sea in 1984. Systematic studies in the Black Sea during about hundred years have not weakened interest in the sea. Lithological and geochemical studies of sediments in estuarine areas of the Danube and the Kyzyl-Irmak rivers, as well as in adjacent parts of the deep sea and some other areas were the main aims of the cruise. Data on morphological structures of river fans, lithologic and chemical compositions of sediments in the fans and their areal distribution, forms of occurrence of chemical elements, role of organic matter and gases in sedimentation and diagenesis are given and discussed in the book.
Resumo:
The transition from magmatic crystallization to high-temperature metamorphism in deep magma chambers (or lenses) beneath spreading ridges has not been fully described. High-temperature microscopic veins found in olivine gabbros, recovered from Ocean Drilling Program Hole 735B on the Southwest Indian Ridge during Leg 176, yield information on the magmatic-hydrothermal transition beneath spreading ridges. The microscopic veins are composed of high-temperature minerals, (i.e., clinopyroxene, orthopyroxene, brown amphibole, and plagioclase). An important feature of these veins is the 'along-vein variation' in mineralogy, which is correlated with the magmatic minerals that they penetrate. Within grains of magmatic plagioclase, the veins are composed of less calcic plagioclase. In grains of olivine, the veins are composed of orthopyroxene + brown amphibole + plagioclase. In clinopyroxene grains, the veins consist of plagioclase + brown amphibole and are accompanied by an intergrowth of brown amphibole + orthopyroxene. The mode of occurrence of the veins cannot be explained if these veins were crystallized from silicate melts. Consequently, these veins and nearby intergrowths were most likely formed by the reaction of magmatic minerals with fluid phases under the conditions of low fluid/rock ratios. Very similar intergrowths of brown amphibole + orthopyroxene are observed in clinopyroxene grains with 'interfingering' textures. It is believed, in general, that the penetration of seawater does not predate the ductile deformation within Layer 3 gabbros of the slow-spreading ridges. If this is the case, the fluid responsible for the veins did not originate from seawater because the formation of the veins and the interfingering textures preceded ductile deformation and, perhaps, complete solidification of the gabbroic crystal mush. It has been proposed, based on fluid inclusion data, that the exsolution of fluid from the latest-stage magma took place at temperatures >700°C in the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (MARK) area. No obvious mineralogical evidence, however, has been found for these magmatic fluids. The calculated temperatures for the veins and nearby intergrowths found in Hole 735B gabbros are up to 1000°C, and these veins are the most plausible candidate for the mineralogical expression of the migrating magmatic fluids.
Resumo:
Analyses of terrigenous sediments from the Chilean continental slope off the southern border of the Atacama desert (27.5°S), focusing on illite crystallinity and the Fe:Al ratio of the sediments, reveal a high-frequency variability of the position of the Southern Westerlies, which is very similar to the coeval short-term climatic events known from Greenland ice cores and from North Atlantic sediments. Besides showing dominantly precession-driven variability in precipitation over the Andes, these analyses also reveal rapid changes in weathering intensity along the Chilean Coastal Range during the last 80,000 years. These rapid changes occur at much shorter timescales than the 19-100 kyr orbital forcing of the Milankovitch cycles.
Resumo:
Oceanic anoxic event 2 (OAE-2) occurring during the Cenomanian/Turonian (C/T) transition is evident from a globally recognized positive stable carbon isotopic excursion and is thought to represent one of the most extreme carbon cycle perturbations of the last 100 Myr. However, the impact of this major perturbation on and interaction with global climate remains unclear. Here we report new high-resolution records of sea surface temperature (SST) based on TEX86 and d 18O of excellently preserved planktic foraminifera and stable organic carbon isotopes across the C/T transition from black shales located offshore Suriname/French Guiana (Demerara Rise, Ocean Drilling Program Leg 207 Site 1260) and offshore Senegal (Cape Verde Basin, Deep Sea Drilling Project Leg 41 Site 367). At Site 1260, where both SST proxy records can be determined, a good match between conservative SST estimates from TEX86 and d 18O is observed. We find that late Cenomanian SSTs in the equatorial Atlantic Ocean (33°C) were substantially warmer than today (27°-29°C) and that the onset of OAE-2 coincided with a rapid shift to an even warmer (35°-36°C) regime. Within the early stages of the OAE a marked (4°C) cooling to temperatures lower than pre-OAE conditions is observed. However, well before the termination of OAE-2 the warm regime was reestablished and persisted into the Turonian. Our findings corroborate the view that the C/T transition represents the onset of the interval of peak Cretaceous warmth. More importantly, they are consistent with the hypotheses that mid-Cretaceous warmth can be attributed to high levels of atmospheric carbon dioxide (CO2) and that major OAEs were capable of triggering global cooling through the negative feedback effect of organic carbon-burial-led CO2 sequestration. Evidently, however, the factors that gave rise to the observed shift to a warmer climate regime at the onset of OAE-2 were sufficiently powerful that they were only briefly counterbalanced by the high rates of carbon burial attained during even the most extreme interval of organic carbon burial in the last 100 Myr.
Electromagnetic, rock magnetic, and geochemical properties of surficial sediments in Eckernförde Bay
Resumo:
Submarine groundwater discharge in coastal settings can massively modify the hydraulic and geochemical conditions of the seafloor. Resulting local anomalies in the morphology and physical properties of surface sediments are usually explored with seismo-acoustic imaging techniques. Controlled source electromagnetic imaging offers an innovative dual approach to seep characterization by its ability to detect pore-water electrical conductivity, hence salinity, as well as sediment magnetic susceptibility, hence preservation or diagenetic alteration of iron oxides. The newly developed electromagnetic (EM) profiler Neridis II successfully realized this concept for a first time with a high-resolution survey of freshwater seeps in Eckernförde Bay (SW Baltic Sea). We demonstrate that EM profiling, complemented and validated by acoustic as well as sample-based rock magnetic and geochemical methods, can create a crisp and revealing fingerprint image of freshwater seepage and related reductive alteration of near-surface sediments. Our findings imply that (1) freshwater penetrates the pore space of Holocene mud sediments by both diffuse and focused advection, (2) pockmarks are marked by focused freshwater seepage, underlying sand highs, reduced mud thickness, higher porosity, fining of grain size, and anoxic conditions, (3) depletion of Fe oxides, especially magnetite, is more pervasive within pockmarks due to higher concentrations of organic and sulfidic reaction partners, and (4) freshwater advection reduces sediment magnetic susceptibility by a combination of pore-water injection (dilution) and magnetite reduction (depletion). The conductivity vs. susceptibility biplot resolves subtle lateral litho- and hydrofacies variations.