980 resultados para Genomic Selection
Resumo:
Designers need to consider both the functional and production process requirements at the early stage of product development. A variety of the research works found in the literature has been proposed to assist designers in selecting the most viable manufacturing process chain. However, they do not provide any assistance for designers to evaluate the processes according to the particular circumstances of their company. This paper describes a framework of an Activity and Resource Advisory System (ARAS) that generates advice about the required activities and the possible resources for various manufacturing process chains. The system provides more insight, more flexibility, and a more holistic and suitable approach for designers to evaluate and then select the most viable manufacturing process chain at the early stage of product development.
Resumo:
The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.
Resumo:
Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Fatty acid methyl ester (FAME) profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN), iodine value (IV), cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study) and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA) ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary) and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA) contents. Application of a polyunsaturated fatty acid (PUFA) weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.
Resumo:
Nowadays, most of the infrastructure development projects undertaken are complex in nature. Practically, public clients who do not have a good understanding of the design and management may suffer severe losses, especially for infrastructure projects. There is a need for luring the right consultant to secure client's investment in infrastructure developments. Throughout the project life cycle, consultants play vital role from the inception to completion stage of a project. A few studies in Malaysia show that infrastructure projects involving irrigation and drainage have experience problems such as poor workmanship, delay and cost overrun due to the consultant's inability or the client incompetence of recruiting consultants in time. This highlights the need of aided decision making and an efficient system to select the best consultant by using Decision Support System (DSS). On the other hand, recent trends reveal that most DSS in construction only concentrate on decision model development. These models are impractical and unused as they are complicated or difficult for laymen such as project managers to utilize. Thus, this research attempts to develop an efficient DSS for consultant selection namely consultDeSS. Driven by the motivation and research aims, this study deployed Design Science Research Methodology (DSRM) dominant with a combination of case studies at the Malaysian Department of Irrigation and Drainage (DID). Two real projects involving irrigation and drainage infrastructure were used to design, implement and evaluate the artefact. The 3-tier consultDeSS was revised after the evaluation and the design was significantly improved based on user feedback. By developing desirable tools that fit client's needs will enhance the productivity and minimize conflict within groups and organisations. The tool is more usable and efficient compared to previous studies in construction. Thus, this research has demonstrated a purposeful artefact with a practical and valid structured development approach that is applicable in a variety of problems in construction discipline.
Resumo:
Purpose: Data from two randomized phase III trials were analyzed to evaluate prognostic factors and treatment selection in the first-line management of advanced non-small cell lung cancer patients with performance status (PS) 2. Patients and Methods: Patients randomized to combination chemotherapy (carboplatin and paclitaxel) in one trial and single-agent therapy (gemcitabine or vinorelbine) in the second were included in these analyses. Both studies had identical eligibility criteria and were conducted simultaneously. Comparison of efficacy and safety was performed between the two cohorts. A regression analysis identified prognostic factors and subgroups of patients that may benefit from combination or single-agent therapy. Results: Two hundred one patients were treated with combination and 190 with single-agent therapy. Objective responses were 37 and 15%, respectively. Median time to progression was 4.6 months in the combination arm and 3.5 months in the single-agent arm (p < 0.001). Median survival imes were 8.0 and 6.6 months, and 1-year survival rates were 31 and 26%, respectively. Albumin <3.5 g, extrathoracic metastases, lactate dehydrogenase ≥200 IU, and 2 comorbid conditions predicted outcome. Patients with 0-2 risk factors had similar outcomes independent of treatment, whereas patients with 3-4 factors had a nonsignificant improvement in median survival with combination chemotherapy. Conclusion: Our results show that PS2 non-small cell lung cancer patients are a heterogeneous group who have significantly different outcomes. Patients treated with first-line combination chemotherapy had a higher response and longer time to progression, whereas overall survival did not appear significantly different. A prognostic model may be helpful in selecting PS 2 patients for either treatment strategy. © 2009 by the International Association for the Study of Lung Cancer.
Resumo:
Mobile teledermatoscopy (MTD) for the early detection of skin cancer uses smartphones with dermatoscope attachments to magnify, capture, and transfer images remotely.1 Using the asymmetry–color variation (AC) rule, consumers achieve dermoscopy sensitivity of 92.9% to 94.0% and specificity of 62.0% to 64.2% for melanoma.2 This pilot randomized trial assessed lesions of concern selected by consumers at high risk of melanoma using MTD plus the AC rule (intervention, n = 10) or the AC rule alone (control, n = 12) during skin self-examination (SSE). Also measured were lesion location patterns, lesions overlooked by participants, provisional clinical diagnoses, likelihood of malignant tumor, and participant pressure to excise lesions.
Resumo:
In Arabidopsis thaliana (Arabidopsis), DICER-LIKE1 (DCL1) functions together with the double-stranded RNA binding protein (dsRBP), DRB1, to process microRNAs (miRNAs) from their precursor transcripts prior to their transfer to the RNA-induced silencing complex (RISC). miRNA-loaded RISC directs RNA silencing of cognate mRNAs via ARGONAUTE1 (AGO1)-catalyzed cleavage. Short interefering RNAs (siRNAs) are processed from viral-derived or transgene-encoded molecules of doublestranded RNA (dsRNA) by the DCL/dsRBP partnership, DCL4/DRB4, and are also loaded to AGO1-catalyzed RISC for cleavage of complementary mRNAs. Here, we use an artificial miRNA (amiRNA) technology, transiently expressed in Nicotiana benthamiana, to produce a series of amiRNA duplexes with differing intermolecular thermostabilities at the 5′ end of duplex strands. Analyses of amiRNA duplex strand accumulation and target transcript expression revealed that strand selection (amiRNA and amiRNA*) is directed by asymmetric thermostability of the duplex termini. The duplex strand possessing a lower 59 thermostability was preferentially retained by RISC to guide mRNA cleavage of the corresponding target transgene. In addition, analysis of endogenous miRNA duplex strand accumulation in Arabidopsis drb1 and drb2345 mutant plants revealed that DRB1 dictates strand selection, presumably by directional loading of the miRNA duplex onto RISC for passenger strand degradation. Bioinformatic and Northern blot analyses of DCL4/DRB4-dependent small RNAs (miRNAs and siRNAs) revealed that small RNAs produced by this DCL/dsRBP combination do not conform to the same terminal thermostability rules as those governing DCL1/DRB1-processed miRNAs. This suggests that small RNA processing in the DCL1/DRB1-directed miRNA and DCL4/DRB4-directed sRNA biogenesis pathways operates via different mechanisms.
Resumo:
The nucleotide sequence of the genomic RNA of barley yellow dwarf virus, PAV serotype was determined except for the 5′-terminal base, and its genome organization deduced. The 5,677 nucleotide genome contains five large open reading frames (ORFs). The genes for the coat protein (1) and the putative viral RNA-dependent RNA polymerase were identified. The latter shows a striking degree of similarity to that of carnation mottle virus (CarMV). By comparison with corona- and retrovirus RNAs, it is proposed that a translational frameshift is involved in expression of the polymerase. An ORF encoding an Mr 49,797 protein (50K ORF) may be translated by in-frame readthrough of the coat protein stop codon. The coat protein, an overlapping 17K ORF, and a 3′ 6.7K ORF are likely to be expressed via subgenomic mRNAs. © 1988 IRL Press Limited.
Resumo:
Rubus yellow net virus (RYNV) was cloned and sequenced from a red raspberry (Rubus idaeus L.) plant exhibiting symptoms of mosaic and mottling in the leaves. Its genomic sequence indicates that it is a distinct member of the genus Badnavirus, with 7932. bp and seven ORFs, the first three corresponding in size and location to the ORFs found in the type member Commelina yellow mottle virus. Bioinformatic analysis of the genomic sequence detected several features including nucleic acid binding motifs, multiple zinc finger-like sequences and domains associated with cellular signaling. Subsequent sequencing of the small RNAs (sRNAs) from RYNV-infected R. idaeus leaf tissue was used to determine any RYNV sequences targeted by RNA silencing and identified abundant virus-derived small RNAs (vsRNAs). The majority of the vsRNAs were 22-nt in length. We observed a highly uneven genome-wide distribution of vsRNAs with strong clustering to small defined regions distributed over both strands of the RYNV genome. Together, our data show that sequences of the aphid-transmitted pararetrovirus RYNV are targeted in red raspberry by the interfering RNA pathway, a predominant antiviral defense mechanism in plants. © 2013.
Resumo:
Plants transformed with Agrobacterium frequently contain T-DNA concatamers with direct-repeat (d/r) or inverted-repeat (i/r) transgene integrations, and these repetitive T-DNA insertions are often associated with transgene silencing. To facilitate the selection of transgenic lines with simple T-DNA insertions, we constructed a binary vector (pSIV) based on the principle of hairpin RNA (hpRNA)-induced gene silencing. The vector is designed so that any transformed cells that contain more than one insertion per locus should generate hpRNA against the selective marker gene, leading to its silencing. These cells should, therefore, be sensitive to the selective agent and less likely to regenerate. Results from Arabidopsis and tobacco transformation showed that pSIV gave considerably fewer transgenic lines with repetitive insertions than did a conventional T-DNA vector (pCON). Furthermore, the transgene was more stably expressed in the pSIV plants than in the pCON plants. Rescue of plant DNA flanking sequences from pSIV plants was significantly more frequent than from pCON plants, suggesting that pSIV is potentially useful for T-DNA tagging. Our results revealed a perfect correlation between the presence of tail-to-tail inverted repeats and transgene silencing, supporting the view that read-through hpRNA transcript derived from i/r T-DNA insertions is a primary inducer of transgene silencing in plants. © CSIRO 2005.
Resumo:
Subterranean clover stunt disease is an economically important aphid-borne virus disease affecting certain pasture and grain legumes in Australia. The virus associated with the disease, subterranean clover stunt virus (SCSV), was previously found to be representative of a new type of single-stranded DNA virus. Analysis of the virion DNA and restriction mapping of double-stranded cDNA synthesized from virion DNA suggested that SCSV has a segmented genome composed of 3 or 4 different species of circular ssDNA each of about 850-880 nucleotides. To further investigate the complexity of the SCSV genome, we have isolated the replicative form DNA from infected pea and from it prepared putative full-length clones representing the SCSV genome segments. Analysis of these clones by restriction mapping indicated that clones representing at least 4 distinct genomic segments were obtained. This method is thus suitable for generating an extensive genomic library of novel ssDNA viruses containing multiple genome segments such as SCSV and banana bunchy top virus. The N-terminal amino acid sequence and amino acid composition of the coat protein of SCSV were determined. Comparison of the amino acid sequence with partial DNA sequence data, and the distinctly different restriction maps obtained for the full-length clones suggested that only one of these clones contained the coat protein gene. The results confirmed that SCSV has a functionally divided genome composed of several distinct ssDNA circles each of about 1 kb.
Resumo:
Clustering identities in a broadcast video is a useful task to aid in video annotation and retrieval. Quality based frame selection is a crucial task in video face clustering, to both improve the clustering performance and reduce the computational cost. We present a frame work that selects the highest quality frames available in a video to cluster the face. This frame selection technique is based on low level and high level features (face symmetry, sharpness, contrast and brightness) to select the highest quality facial images available in a face sequence for clustering. We also consider the temporal distribution of the faces to ensure that selected faces are taken at times distributed throughout the sequence. Normalized feature scores are fused and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face clustering system. We present a news video database to evaluate the clustering system performance. Experiments on the newly created news database show that the proposed method selects the best quality face images in the video sequence, resulting in improved clustering performance.
Resumo:
Ureaplasmas are the microorganisms most frequently isolated from the amniotic fluid of pregnant women and can cause chronic intrauterine infections. These tiny bacteria are thought to undergo rapid evolution and exhibit a hypermutatable phenotype; however, little is known about how ureaplasmas respond to selective pressures in utero. Using an ovine model of chronic intra-amniotic infection, we investigated if exposure of ureaplasmas to sub-inhibitory concentrations of erythromycin could induce phenotypic or genetic indicators of macrolide resistance. At 55 days gestation, 12 pregnant ewes received an intra-amniotic injection of a non-clonal, clinical U. parvum strain, followed by: (i) erythromycin treatment (IM, 30 mg/kg/day, n=6); or (ii) saline (IM, n=6) at 100 days gestation. Fetuses were then delivered surgically at 125 days gestation. Despite injecting the same inoculum into all ewes, significant differences between amniotic fluid and chorioamnion ureaplasmas were detected following chronic intra-amniotic infection. Numerous polymorphisms were observed in domain V of the 23S rRNA gene of ureaplasmas isolated from the chorioamnion (but not the amniotic fluid), resulting in a mosaic-like sequence. Chorioamnion isolates also harboured the macrolide resistance genes erm(B) and msr(D) and were associated with variable roxithromycin minimum inhibitory concentrations. Remarkably, this variability occurred independently of exposure of ureaplasmas to erythromycin, suggesting that low-level erythromycin exposure does not induce ureaplasmal macrolide resistance in utero. Rather, the significant differences observed between amniotic fluid and chorioamnion ureaplasmas suggest that different anatomical sites may select for ureaplasma sub-types within non-clonal, clinical strains. This may have implications for the treatment of intrauterine ureaplasma infections.
Resumo:
The application of artificial intelligence in finance is relatively new area of research. This project employed artificial neural networks (ANNs) that use both fundamental and technical inputs to predict future prices of widely held Australian stocks and use these predicted prices for stock portfolio selection over a long investment horizon. The research involved the creation and testing of a large number of possible network configurations and draws conclusions about ANN architectures and their overall suitability for the purpose of stock portfolio selection.