954 resultados para Gene function
Resumo:
Rotation-mediated aggregate cultures of foetal rat liver cells were prepared and grown in a chemically defined medium. Their capacity for cellular organisation and maturation was studied over a culture period of 3 wk by using both morphologic and biochemical criteria. It was found that within each aggregate, distinct liver cell types were present and attained their normal, differentiated phenotype. Parenchymal cells formed small acini with a central lumen. Within the first 2 wk in culture, albumin and ferritin mRNA levels were maintained, while the alpha-fetoprotein mRNA levels decreased, and tyrosine aminotransferase (TAT) gene expression increased. No significant response to glucocorticoids was observed in early cultures, whereas after 3 wk a marked increase in TAT mRNA levels was elicited by dexamethasone and glucagon (additive stimulatory effects). The results show that foetal rat liver cells cultured in a chemically defined medium are able to rearrange themselves into histotypic structures, and display a developmental pattern of gene expression comparable to that of perinatal rat liver in vivo. This culture system offers therefore a useful model to study the development and function of liver cells.
Resumo:
The aim of this study was to evaluate the effect of ovariectomy on the acute-phase response of inflammatory stress. Ex vivo adrenocortical, peripheral mononuclear cell (PMNC) and adipocyte activities were studied in intact and ovariectomized mice. Endotoxemia was mimicked by intraperitoneal administration of bacterial lipopolysaccharide (LPS; 25 mg per mouse) to sham-operated and 21-day ovariectomized mice. Circulating corticosterone, tumor necrosis factor-alpha (TNFalpha) and leptin concentrations were monitored before and 30-120 min after the administration of LPS. Additionally, in vitro experiments were performed with isolated corticoadrenal cells, PMNCs and omental adipocytes from sham-operated and ovariectomized mice incubated with specific secretagogues. The results indicate that while ovariectomy enhanced TNFalpha secretion after in vivo administration of LPS, it reduced corticoadrenal response and abrogated LPS-elicited leptin secretion into the circulation. While the corticoadrenal sensitivity to ACTH stimulation was reduced by ovariectomy, the LPS-induced PMNC response was not affected. Exogenous leptin enhanced baseline PMNC function regardless of surgery. Finally, ovariectomy drastically reduced in vitro adipocyte functionality. Our data support the notion that ovariectomy modified neuroendocrine-immune-adipocyte axis function and strongly suggest that ovarian activity could play a pivotal role in the development of an adequate immune defense mechanism after injury.
Resumo:
PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. Clin Cancer Res; 19(13); 3439-49. ©2013 AACR.
Resumo:
The Onecut homeodomain transcription factor hepatic nuclear factor 6 (Hnf6) is necessary for proper development of islet beta-cells. Hnf6 is initially expressed throughout the pancreatic epithelium but is downregulated in endocrine cells at late gestation and is not expressed in postnatal islets. Transgenic mice in which Hnf6 expression is maintained in postnatal islets (pdx1(PB)Hnf6) show overt diabetes and impaired glucose-stimulated insulin secretion (GSIS) at weaning. We now define the mechanism whereby maintenance of Hnf6 expression postnatally leads to beta-cell dysfunction. We provide evidence that continued expression of Hnf6 impairs GSIS by altering insulin granule biosynthesis, resulting in a reduced response to secretagogues. Sustained expression of Hnf6 also results in downregulation of the beta-cell-specific transcription factor MafA and a decrease in total pancreatic insulin. These results suggest that downregulation of Hnf6 expression in beta-cells during development is essential to achieve a mature, glucose-responsive beta-cell.
Resumo:
Interleukin-7 (IL-7) is crucial for the development of T and B lymphocytes from common lymphoid progenitors (CLPs) and for the maintenance of mature T lymphocytes. Its in vivo role for dendritic cells (DCs) has been poorly defined. Here, we investigated whether IL-7 is important for the development or maintenance of different DC types. Bone marrow-derived DCs expressed the IL-7 receptor (IL-7R) and survived significantly longer in the presence of IL-7. Migratory DCs (migDCs) isolated from lymph nodes also expressed IL-7R. Surprisingly, IL-7R was not required for their maintenance but indirectly for their development. Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) resident in lymph nodes and spleen were IL-7R(-). Using mixed bone marrow chimeras, we observed an intrinsic requirement for IL-7R signals in their development. As the number of CLPs but not myeloid progenitors was reduced in the absence of IL-7 signals, we propose that a large fraction of cDCs and pDCs derives from CLPs and shares not only the lymphoid origin but also the IL-7 requirement with lymphocyte precursors.
Resumo:
Neuronal development is the result of a multitude of neural migrations, which require extensive cell-cell communication. These processes are modulated by extracellular matrix components, such as heparan sulfate (HS) polysaccharides. HS is molecularly complex as a result of nonrandom modifications of the sugar moieties, including sulfations in specific positions. We report here mutations in HS 6-O-sulfotransferase 1 (HS6ST1) in families with idiopathic hypogonadotropic hypogonadism (IHH). IHH manifests as incomplete or absent puberty and infertility as a result of defects in gonadotropin-releasing hormone neuron development or function. IHH-associated HS6ST1 mutations display reduced activity in vitro and in vivo, suggesting that HS6ST1 and the complex modifications of extracellular sugars are critical for normal development in humans. Genetic experiments in Caenorhabditis elegans reveal that HS cell-specifically regulates neural branching in vivo in concert with other IHH-associated genes, including kal-1, the FGF receptor, and FGF. These findings are consistent with a model in which KAL1 can act as a modulatory coligand with FGF to activate the FGF receptor in an HS-dependent manner.
Resumo:
Little is known about the role of the transcription factor peroxisome proliferator-activated receptor (PPAR) beta/delta in liver. Here we set out to better elucidate the function of PPARbeta/delta in liver by comparing the effect of PPARalpha and PPARbeta/delta deletion using whole genome transcriptional profiling and analysis of plasma and liver metabolites. In fed state, the number of genes altered by PPARalpha and PPARbeta/delta deletion was similar, whereas in fasted state the effect of PPARalpha deletion was much more pronounced, consistent with the pattern of gene expression of PPARalpha and PPARbeta/delta. Minor overlap was found between PPARalpha- and PPARbeta/delta-dependent gene regulation in liver. Pathways upregulated by PPARbeta/delta deletion were connected to innate immunity and inflammation. Pathways downregulated by PPARbeta/delta deletion included lipoprotein metabolism and various pathways related to glucose utilization, which correlated with elevated plasma glucose and triglycerides and reduced plasma cholesterol in PPARbeta/delta-/- mice. Downregulated genes that may underlie these metabolic alterations included Pklr, Fbp1, Apoa4, Vldlr, Lipg, and Pcsk9, which may represent novel PPARbeta/delta target genes. In contrast to PPARalpha-/- mice, no changes in plasma free fatty acid, plasma beta-hydroxybutyrate, liver triglycerides, and liver glycogen were observed in PPARbeta/delta-/- mice. Our data indicate that PPARbeta/delta governs glucose utilization and lipoprotein metabolism and has an important anti-inflammatory role in liver. Overall, our analysis reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver.
Resumo:
Chromatin insulators are defined as transcriptionally neutral elements that prevent negative or positive influence from extending across chromatin to a promoter. Here we show that yeast subtelomeric anti-silencing regions behave as boundaries to telomere-driven silencing and also allow discontinuous propagation of silent chromatin. These two facets of insulator activity, boundary and silencing discontinuity, can be recapitulated by tethering various transcription activation domains to tandem sites on DNA. Importantly, we show that these insulator activities do not involve direct transcriptional activation of the reporter promoter. These findings predict that certain promoters behave as insulators and partition genomes in functionally independent domains.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARalpha and PPARbeta isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARalpha-/-, PPARbeta-/-, and double PPARalpha-/- beta-/- mice. Heart and soleus muscle analyses show that the deletion of PPARalpha induces a decrease of the HAD activity (beta-oxidation) while soleus contractile phenotype remains unchanged. A PPARbeta deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARbeta and PPARalpha functions since double gene deletion PPARalpha-PPARbeta mostly reproduces the null PPARalpha-mediated reduced beta-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARbeta is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARalpha in PPARalpha null mice.
Resumo:
Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.
Resumo:
Summary : The canonical Wnt signaling pathway plays key roles in the maintenance of self-renewing tissues, like the gut or the skin. In contrast, the role of this pathway in hematopoiesis remains poorly defined. Wnt ligands transmit signals through ß-catenin which activates gene transcription upon its association with Lymphoid Cell Enhancer/T Cell Factor (LEF/TCF). Currently, v-catenin is the only alternative factor known to transduce canonical Wnt signals. The ß-/γ-catenin bindiná domain in TCF-1 is required to partly rescue thymopoiesis and NK cell development in TCF-1-deficient mice. However, T cell development and hematopoiesis w-as normal in mice deficient of ß-catenin, or of γ-catenin. Surprisingly we found that hematopoiesis and thymopoiesis was also normal in the combined absence of ß- and γ-catenin. Reporter assays showed that double-deficient lymphocytes were still able to transduce canonical wnt signals. These data provided evidence that hematopoietic cells can transduce canonical Wnt signals in the combined absence of ß- and γ-catenin. There exist numerous TCF-1 isoforrns including those that harbor the N-terminal ß-/y-catenin binding domain or that contains a C-terminal CRARF domain whose role in vivo has not been previously tested. We found that the CRARF domain influences lymphocyte development in conjunction with the N-treminal ß-/γ-catenin binding. The presence of the two domains directs thymocytes to the CD8+ T cell lineage whereas NK cell development is abolished. Roles of the canonical Wnt/TCF-1 pathway for lymphocyte function have not been defined. We demonstrate that TCF-1 deficient CDBT T cells mount a normal primary response to viral infection but these T cells fail to expand upon restimulation. The failure of CD8+ T cells to respond to IL-2 during primary infection seems to account for this phenotype. Thus, TCF-1 is essential for programming functional CD8+ T cell memory. Collectively, these data provide significant new insights into the role of Wnt/TCF-1 pathway for lymphocyte development and function and suggest a novel mechanism of Wnt signal transuction in hematopoietic cells. Résumé : La voie de signalisation canonique Wnt joue un rôle prépondérant dans le renouvellement de tissus, comme l'intestin ou la peau. Son rôle dans l'hématopoïèse est quant à lui mal défini. Le ligand Wnt transmet le signal via la ß-catenin qui active la transcription de gènes cibles quand il est associé avec Lymphoid Cell Enhancer,~T Cell Factor (LEF/TCF). Actuellement, la γ-catenin est le seul autre facteur connu pouvant se substituer à la fonction de la ß-catenin. Un variant de TCF-1 contenant le domaine liant ß-/,~-catenin est capable de restaurer le développement des lymphocytes T et NK en l'absence de TCF-1. Cependant la thymopoïèse et l'hématopoïèse sont normales dans les souris déficientes pour la ß-catenin ou la γ-catenin. De façon surprenante, nous avons trouvé que l'hématopoïèse et le développement des lymphocytes sont normaux lors de l'absence combinée de ß-/γ-catenin. De plus, la transduction des signaux de la voie de signalisation Wnt est maintenue dans des lymphocytes déficients pour ß-/γ-catenin. Ces résultats démontrent que les cellules hématopoïétiques peuvent transmettre les signaux de la voie canonique Wnt lors de l'absence combinée de la ß et la γ -catenin. Il existe de nombreuses isofonnes de TCF-1, y compris certaines qui comprennent un domaine qui lie ß-/γ-catenin du côté N-terminus ou qui contiennent un domaine CRARF du côté C-terminus. Nous montrons ici que le domaine CRARF influence le développement des lymphocytes en conjonction avec le domaine liant ß-/γ-catenin. La présence des deux domaines dirige les thymocytes vers la lignée de cellules T CD8, alors que le développement des cellules NK est aboli. Au-delà de sa fonction sur le développement des lymphocytes, le rôle de la soie de signalisation canonique Wnt/TCF-1 lors d'une infection n'a pas été défini. Nous avons montré que les cellules T CD8, déficientes pour TCF-1, développent une réponse primaire normale à une infection virale, mais qu'elles ne s'accumulent pas après restimulation. L'incapacité des cellules TCD8 à répondre à l'IL-2 durant la réponse primaire peut expliquer ce phénotype. Ainsi; TCF-1 est essentiel pour la programmation de cellules T CD8 mémoires fonctionnelles. L'ensemble de ces résultats fournit de nouveaux aperçus du rôle de la voie de signalisation Wnt/TCF-1 pour le développement et la fonction des lymphocytes et suggèrent un nouveau mécanisme de transduction du signal Wnt dans les cellules hématopoïétiques.
Resumo:
OBJECTIVE: Renal cytochrome P450 3A5 (CYP3A5) activity has been associated with blood pressure and salt sensitivity in humans. We determined whether CYP3A5 polymorphisms are associated with ambulatory blood pressure (ABP) and with glomerular filtration rate (GFR) in African families. METHODS: Using a cross-sectional design, 375 individuals from 72 families, each with at least two hypertensive siblings, were recruited through a hypertension register in the Seychelles (Indian Ocean). We analyzed the association between the CYP3A5 alleles (*1, *3, *6 and *7) and ABP, GFR and renal sodium handling (fractional excretion of lithium), from pedigree data, allowing for other covariates and familial correlations. RESULTS: CYP3A5*1 carriers increased their daytime systolic and diastolic ABP with age (0.55 and 0.23 mmHg/year) more than non-carriers (0.21 and 0.04 mmHg/year). CYP3A5*1 had a significant main effect on daytime systolic/diastolic ABP [regression coefficient (SE): -29.6 (10.0)/-8.2 (4.1) mmHg, P = 0.003/0.045, respectively] and this effect was modified by age (CYP3A5*1 x age interactions, P = 0.017/0.018). For night-time ABP, the effect of CYP3A5*1 was modified by urinary sodium excretion, not by age. For renal function, CYP3A5*1 carriers had a 7.6(3.8) ml/min lower GFR (P = 0.045) than non-carriers. Proximal sodium reabsorption decreased with age in non-carriers, but not in CYP3A5*1 carriers (P for interaction = 0.02). CONCLUSIONS: These data demonstrate that CYP3A5 polymorphisms are associated with ambulatory BP, CYP3A5*1 carriers showing a higher age- and sodium- related increase in ABP than non-carriers. The age effect may be due, in part, to the action of CYP3A5 on renal sodium handling.
Resumo:
This paper describes the development of an analytical technique for arsenic analyses that is based on genetically-modified bioreporter bacteria bearing a gene encoding for the production of a green fluorescent protein (gfp). Upon exposure to arsenic (in the aqueous form of arsenite), the bioreporter production of the fluorescent reporter molecule is monitored spectroscopically. We compared the response measured as a function of time and concentration by steady-state fluorimetry (SSF) to that measured by epi-fluorescent microscopy (EFM). SSF is a bulk technique; as such it inherently yields less information, whereas EFM monitors the response of many individual cells simultaneously and data can be processed in terms of population averages or subpopulations. For the bioreporter strain used here, as well as for the literature we cite, the two techniques exhibit similar performance characteristics. The results presented here show that the EFM technique can compete with SSF and shows substantially more promise for future improvement; it is a matter of research interest to develop optimized methods of EFM image analysis and statistical data treatment. EFM is a conduit for understanding the dynamics of individual cell response vs. population response, which is not only a matter of research interest, but is also promising in the practical terms of developing micro-scale analysis.
Resumo:
Whole genome sequences of microbial pathogens present new opportunities for clinical application. Presently, genome sequencing of the human protozoan parasite Leishmania major is in progress. The driving forces behind the genome project are to identify genes with key cellular functions and new drug targets, to increase knowledge on mechanisms of drug resistance and to favor technology transfer to scientists from endemic countries. Sequencing of the genome is also aimed at the identification of genes that are expressed in the infectious stages of the parasite and in particular in the intracellular form of the parasite. Several protective antigens of Leishmania have been identified. In addition to these antigens, lysosomal cysteine proteinases (CPs) have been characterized in different strains of Leishmania and Trypanosoma, as new target molecules. Recently, we have isolated and characterized Type I (CPB) and Type II (CPA) cysteine proteinase encoding genes from L. major. The exact function of cysteine proteinases of Leishmania is not completely understood, although there are a few reports describing their role as virulence factors. One specific feature of CPB in Leishmania and other trypanosomatids, is the presence of a Cterminal extension (CTE) which is possibly indicative of conserved structure and function. Recently, we demonstrated that DNA immunization of genetically susceptible BALB / c mice, using a cocktail of CPB and CPA genes, induced long lasting protection against L. major infection. This review intends to give an overview of the current knowledge on genetic vaccination used against leishmaniasis and the importance of CP genes for such an approach.
Resumo:
The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.