986 resultados para Gaussian functions
Resumo:
It is shown that at most, n + 3 tests are required to detect any single stuck-at fault in an AND gate or a single faulty EXCLUSIVE OR (EOR) gate in a Reed-Muller canonical form realization of a switching function.
Resumo:
Oxysterol binding protein (OSBP) homologues have been found in eukaryotic organisms ranging from yeast to humans. These evolutionary conserved proteins have in common the presence of an OSBP-related domain (ORD) which contains the fully conserved EQVSHHPP sequence motif. The ORD forms a barrel structure that binds sterols in its interior. Other domains and sequence elements found in OSBP-homologues include pleckstrin homology domains, ankyrin repeats and two phenylalanines in an acidic tract (FFAT) motifs, which target the proteins to distinct subcellular compartments. OSBP homologues have been implicated in a wide range of intracellular processes, including vesicle trafficking, lipid metabolism and cell signaling, but little is known about the functional mechanisms of these proteins. The human family of OSBP homologues consists of twelve OSBP-related proteins (ORP). This thesis work is focused on one of the family members, ORP1, of which two variants were found to be expressed tissue-specifically in humans. The shorter variant, ORP1S contains an ORD only. The N-terminally extended variant, ORP1L, comprises a pleckstrin homology domain and three ankyrin repeats in addition to the ORD. The two ORP1 variants differ in intracellular localization. ORP1S is cytosolic, while the ankyrin repeat region of ORP1L targets the protein to late endosomes/lysosomes. This part of ORP1L also has profound effects on late endosomal morphology, inducing perinuclear clustering of late endosomes. A central aim of this study was to identify molecular interactions of ORP1L on late endosomes. The morphological changes of late endosomes induced by overexpressed ORP1L implies involvement of small Rab GTPases, regulators of organelle motility, tethering, docking and/or fusion, in generation of the phenotype. A direct interaction was demonstrated between ORP1L and active Rab7. ORP1L prolongs the active state of Rab7 by stabilizing its GTP-bound form. The clustering of late endosomes/lysosomes was also shown to be linked to the minus end-directed microtubule-based dynein-dynactin motor complex through the ankyrin repeat region of ORP1L. ORP1L, Rab7 and the Rab7-interacting lysosomal protein (RILP) were found to be part of the same effector complex recruiting the dynein-dynactin complex to late endosomes, thereby promoting minus end-directed movement. The proteins were found to be physically close to each other on late endosomes and RILP was found to stabilize the ORP1L-Rab7 interaction. It is possible that ORP1L and RILP bind to each other through their C-terminal and N-terminal regions, respectively, when they are bridged by Rab7. With the results of this study we have been able to place a member of the uncharacterized OSBP-family, ORP1L, in the endocytic pathway, where it regulates motility and possibly fusion of late endosomes through interaction with the small GTPase Rab7.
Resumo:
A nonexhaustive procedure for obtaining minimal Reed-Muller canonical (RMC) forms of switching functions is presented. This procedure is a modification of a procedure presented earlier in the literature and enables derivation of an upper bound on the number of RMC forms to be derived to choose a minimal one. It is shown that the task of obtaining minimal RMC forms is simplified in the case of symmetric functions and self-dual functions.
Resumo:
The actin cytoskeleton is essential for many cellular processes, including motility, morphogenesis, endocytosis and signal transduction. Actin can exist in monomeric (G-actin) or filamentous (F-actin) form. Actin filaments are considered to be the functional form of actin, generating the protrusive forces characteristic for the actin cytoskeleton. The structure and dynamics of the actin filament and monomer pools are regulated by a large number of actin-binding proteins in eukaryotic cells. Twinfilin is an evolutionarily conserved small actin monomer binding protein. Twinfilin is composed of two ADF/cofilin-like domains, separated by a short linker and followed by a C-terminal tail. Twinfilin forms a stable, high affinity complex with ADP-G-actin, inhibits the nucleotide exchange on actin monomers, and prevents their assembly into filament ends. Twinfilin was originally identified from yeast and has since then been found from all organisms studied except plants. Not much was known about the role of twinfilin in the actin dynamics in mammalian cells before this study. We set out to unravel the mysteries still covering twinfilins functions using biochemistry, cell biology, and genetics. We identified and characterized two mouse isoforms for the previously identified mouse twinfilin-1. The new isoforms, twinfilin-2a and -2b, are generated from the same gene through alternative promoter usage. The three isoforms have distinctive expression patterns, but are similar biochemically. Twinfilin-1 is the major isoform during development and is expressed in high levels in almost all tissues examined. Twinfilin-2a is also expressed almost ubiquitously, but at lower levels. Twinfilin-2b turned out to be a muscle-specific isoform, with very high expression in heart and skeletal muscle. It seems all mouse tissues express at least two twinfilin isoforms, indicating that twinfilins are important regulators of actin dynamics in all cell and tissue types. A knockout mouse line was generated for twinfilin-2a. The mice homozygous for this knockout were viable and developed normally, indicating that twinfilin-2a is dispensable for mouse development. However, it is important to note that twinfilin-2a shows similar expression pattern to twinfilin-1, suggesting that these proteins play redundant roles in mice. All mouse isoforms were shown to be able to sequester actin filaments and have higher affinity for ADP-G-actin than ATP-G-actin. They are also able to directly interact with heterodimeric capping protein and PI(4,5)P2 similar to yeast twinfilin. In this study we also uncovered a novel function for mouse twinfilins; capping actin filament barbed ends. All mouse twinfilin isoforms were shown to possess this function, while yeast and Drosophila twinfilin were not able to cap filament barbed ends. Twinfilins localize to the cytoplasm but also to actin-rich regions in mammalian cells. The subcellular localizations of the isoforms are regulated differently, indicating that even though twinfilins biochemical functions in vitro are very similar, in vivo they can play different roles through different regulatory pathways. Together, this study show that twinfilins regulate actin filament assembly both by sequestering actin monomers and by capping filament barbed ends, and that mammals have three biochemically similar twinfilin isoforms with partially overlapping expression patterns.
Resumo:
A non-dimensional parameter descriptive of the plowing nature of surfaces is proposed for the case of sliding between a soft and a relatively hard metallic pair. From a set of potential parameters which can be descriptive of the phenomenon, dimensionless groups are formulated and the influence of each one of them is analyzed. A non-dimensional parameter involving the root-mean square deviation (R-q) and the centroidal frequency (F-mean) deducted from the power-spectrum is found to have a high degree of correlation (as high as 0.93) with the coefficient of friction obtained in sliding experiments under lubricated condition.
Resumo:
Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.
Resumo:
We extend some of the classical connections between automata and logic due to Büchi (1960) [5] and McNaughton and Papert (1971) [12] to languages of finitely varying functions or “signals”. In particular, we introduce a natural class of automata for generating finitely varying functions called View the MathML source’s, and show that it coincides in terms of language definability with a natural monadic second-order logic interpreted over finitely varying functions Rabinovich (2002) [15]. We also identify a “counter-free” subclass of View the MathML source’s which characterise the first-order definable languages of finitely varying functions. Our proofs mainly factor through the classical results for word languages. These results have applications in automata characterisations for continuously interpreted real-time logics like Metric Temporal Logic (MTL) Chevalier et al. (2006, 2007) [6] and [7].
Resumo:
State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar´ f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifold, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods.
Resumo:
Until recently, objective investigation of the functional development of the human brain in vivo was challenged by the lack of noninvasive research methods. Consequently, fairly little is known about cortical processing of sensory information even in healthy infants and children. Furthermore, mechanisms by which early brain insults affect brain development and function are poorly understood. In this thesis, we used magnetoencephalography (MEG) to investigate development of cortical somatosensory functions in healthy infants, very premature infants at risk for neurological disorders, and adolescents with hemiplegic cerebral palsy (CP). In newborns, stimulation of the hand activated both the contralateral primary (SIc) and secondary somatosensory cortices (SIIc). The activation patterns differed from those of adults, however. Some of the earliest SIc responses, constantly present in adults, were completely lacking in newborns and the effect of sleep stage on SIIc responses differed. These discrepancies between newborns and adults reflect the still developmental stage of the newborns’ somatosensory system. Its further maturation was demonstrated by a systematic transformation of the SIc response pattern with age. The main early adultlike components were present by age two. In very preterm infants, at term age, the SIc and SIIc were activated at similar latencies as in healthy fullterm newborns, but the SIc activity was weaker in the preterm group. The SIIc response was absent in four out of the six infants with brain lesions of the underlying hemisphere. Determining the prognostic value of this finding remains a subject for future studies, however. In the CP adolescents with pure subcortical lesions, contrasting their unilateral symptoms, the SIc responses of both hemispheres differed from those of controls: For example the distance between SIc representation areas for digits II and V was shorter bilaterally. In four of the five CP patients with corticosubcortical brain lesions, no normal early SIc responses were evoked by stimulation of the palsied hand. The varying differences in neuronal functions, underlying the common clinical symptoms, call for investigation of more precisely designed rehabilitation strategies resting on knowledge about individual functional alterations in the sensorimotor networks.
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.