267 resultados para GONDWANA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cutri Formation’s, type location, exposed in the NW of Mallorca, Spain has previously been described by Álvaro et al., (1989) and further interpreted by Abbots (1989) unpublished PhD thesis as a base-of-slope carbonate apron. Incorporating new field and laboratory analysis this paper enhances this interpretation. From this analysis, it can be shown without reasonable doubt that the Cutri Formation was deposited in a carbonate base-of-slope environment on the palaeowindward side of a Mid-Jurassic Tethyan platform. Key evidence such as laterally extensive exposures, abundant deposits of calciturbidtes and debris flows amongst hemipelagic deposits strongly support this interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies about the strength of the lithosphere in the Iberia centre fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. These anisotropies have been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The object of this article is to offer a synthesis of the knowledge clarifying the originality and the diversity of the submarine geological formations of the New Caledonian EEZ. A reminder is given onto the geologic history of the region, based upon the dislocation of the Gondwana Continent, the opening of the Tasman Sea, the presence of submarine volcanism, the setting up of heavy peridotitic rocks, the building up of the Fairway and Lord Howe Ridges and of sedimentary basins, the formation of volcanic domes and sea-mounts or guyots, the subduction along the Vanuatu Trench, the uplift of the Loyalty Islands, the development of carbonated ptatforms around the islands etc.... Of this complex history ensues an exceptional submarine geo-diversity. After this presentation the article clarifies the methods and the tools used in marine geosciences to map, explore, observe, analyze, sample, that they are embarked or are autonomous, teleoperated or inhabited systems. A chapter describes the programs which were set up since about forty years and the results obtained as well as the scientific teams concerned with. In conclusion, based on the unpublished character of this geo-diversity, the article introduces the second text to come in a next issue of theTai Kona magazine, text which will focus on the scientific, economic (mineral resources), environmental (deep biodiversity) and risks (seismicity) challenges that are worn by one of the most original submarine geologic context in the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neodymium isotopic compositions (εNd) have been largely used for the last fifty years as a tracer of past ocean circulation, and more intensively during the last decade to investigate ocean circulation during the Cretaceous period. Despite a growing set of data, circulation patterns still remain unclear during this period. In particular, the identification of the deep-water masses and their spatial extension within the different oceanic basins are poorly constrained. In this study we present new deep-water εNd data inferred from the Nd isotope composition of fish remains and Fe-Mn oxyhydroxide coatings on foraminifera tests, along with new εNd data of residual (partly detrital) fraction recovered from DSDP sites 152 (Nicaraguan Rise), 258 (Naturaliste Plateau), 323 (Bellinghausen Abyssal Plain), and ODP sites 690 (Maud Rise) and 700 (East Georgia Basin, South Atlantic). The presence of abundant authigenic minerals in the sediments at sites 152 and 690 detected by XRD analyses may explain both middle rare earth element enrichments in the spectra of the residual fraction and the evolution of residual fraction εNd that mirror that of the bottom waters at the two sites. The results point towards a close correspondence between the bottom water εNd values of sites 258 and 700 from the late Turonian to the Santonian. Since the deep-water Nd isotope values at these two sites are also similar to those at other proto-Indian sites, we propose the existence of a common intermediate to deep-water water mass as early as the mid-Cretaceous. The water mass would have extended from the central part of the South Atlantic to the eastern part of proto-Indian ocean sites, beyond the Kerguelen Plateau. Furthermore, data from south and north of the Rio Grande Rise-Walvis Ridge complex (sites 700 and 530) are indistinguishable from the Turonian to Campanian, suggesting a common water mass since the Turonian at least. This view is supported by a reconstruction of the Rio Grande Rise-Walvis Ridge complex during the Turonian, highlighting the likely existence of a deep breach between the Rio Grande Rise and the proto-Walvis Ridge at that time. Thus deep-water circulation may have been possible between the different austral basins as early as the Turonian, despite the presence of potential oceanic barriers. Comparison of new seawater and residue εNd data on Nicaraguan Rise suggest a westward circulation of intermediate waters through the Caribbean Seaway during the Maastrichtian and Paleocene from the North Atlantic to the Pacific. This westward circulation reduced the Pacific water influence in the Atlantic, and was likely responsible for more uniform, less radiogenic εNd values in the North Atlantic after 80 Ma. Additionally, our data document an increasing trend observed in several oceanic basins during the Maastrichtian and the Paleocene, which is more pronounced in the North Pacific. Although the origin of this increase still remains unclear, it might be explained by an increase in the contribution of radiogenic material to upper ocean waters in the northern Pacific. By sinking to depth, these waters may have redistributed to some extent more radiogenic signatures to other ocean basins through deep-water exchanges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta um modelo gravimétrico 2,5D gerado a partir de 315 novas estações gravimétricas levantadas ao longo de uma seção transversal NW-SE com 750 km de extensão na porção setentrional da Província Borborema, NE do Brasil. A modelagem gravimétrica foi aplicada separadamente nas componentes regional e residual do campo gravitacional. A modelagem 2,5D das anomalias regionais revelou que a profundidade da interface crosta-manto varia de 28 a 32 km, considerando uma densidade média de 2,8 g/cm3 para a crosta continental e de 3,3 g/cm3 para o manto litosférico. As anomalias residuais de alta frequência foram interpretadas a partir do contraste de densidade da crosta superior, com uma espessura não superior a 10 km, e uma ampla associação litológica, com densidades variando de 2,55 a 2,9 g/cm3. A configuração geotectônica litosférica atual da Província Borborema é claramente resultado da ruptura dos continentes Sul-Americano e Africano no Mesozoico, na qual boa parte dos vestígios das estruturas tectônicas de grandes profundidades formadas durante a orogênese Brasiliana/Pan-Africana foi mascarada pelo último episódio tectônico responsável pela fragmentação do Gondwana Ocidental. _______________________________________________________________________________________ ABSTRACT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dataciones geocronológicas U-Pb en circones detríticos, edades 40Ar/ 39Ar en mica blanca, análisis estructurales, texturales, la composición química de elementos mayores, traza y tierras raras (REE) así como la composición química mineral de las rocas metamáficas, metultramáficas y metasedimentarias, fueron determinadas con el fin de determinar las condiciones metamórficas, el ambiente tectónico y la procedencia del Esquisto Granjeno en el noreste de México (Nuevo León y Tamaulipas). En el país existen rocas metamórficas paleozoicas que están relacionados con los procesos que dieron lugar a la colisión entre Laurentia y Gondwana durante la formación Pangea. Vestigios de la configuración continental paleozoica de México se encuentran en el Esquisto Granjeno, que forma parte del basamento metamórfico de la Sierra Madre Oriental. Relaciones de campo y análisis petrográficos indican que el Esquisto Granjeno consiste de rocas metamórficas con protolitos sedimentarios (psamita, pelita, turbidita, conglomerado, lutita negra) e ígneos (toba, flujos de lava, lava meta-almohadillada y cuerpos ultramáficos). El geotermómetro de clorita, el geobarómetro de fengita y la edad 40Ar/ 39Ar calculada indican que el Esquisto Granjeno fue afectado por metamorfismo en facies de sub-esquistos verdes a facies de esquistos verdes-anfibolita, (165-410°C y 2.5-4 kbar ) durante el Carbonífero (330±30 Ma). Las rocas metamáficas del Esquisto Granjeno tienen una afinidad sub-alcalina a alcalina y se caracterizan por un bajo contenido de SiO2 (40-50 wt%), alto contenido de Al2O3 (19 wt%) y #MgO de 48-67. La abundancia de tierras raras (∑REE) varía de 51-167 ppm. Estas rocas presentan patrones de REE normalizados a condrita moderadamente fraccionados, con valores de LaN/YbN 0.74-8.88. La anomalía de europio es variable (Eu/Eu* 0.80- 1.09) y presenta una tendencia ligeramente negativa (Eu/Eu* 0.96). Las rocas metamáficas tienen composiciones correspondientes a basaltos de cresta (MORB) e isla oceánica (OIB), de acuerdo a los valores en las relaciones Zr/Y=6-8 y Zr/Nb=4-9 para OIB y 0.9-3; 14-53 para MORB. Los protolitos de la serpentinita y el metacumulato corresponden a dunita y harzburgita. La serpentina y el metacumulato tienen un contenido de MgO (16-39 wt%), SiO2 (36-45 wt%), FeO (2-11 wt%), Al2O3 (0.76-13 wt%), CaO (< 22wt%) y #MgO (85-98, 69). Las rocas de talco presentan contenido de MgO (26-33wt%), SiO2 (31- 61wt%), FeO (3.7-9.8wt%), Al2O3 (1.2-19wt%), CaO (0.25-2.0wt%), y #Mg (83-93). Los patrones de tierras raras casi horizontals (LaN/YbN=0.51-19.95 y la relación LaN/SmN=0.72-9.08 sugieren un origen vinculado a un ambiente de dorsal oceánica y de suprasubducción para las rocas ultramáficas. Las serpentinitas contienen cromita rica en Al, ferrit-cromita y magnetita. La cromita rica en Al tiene #Cr 0.48-0.55 que indica que este mineral fue formado a partir de una fuente tipo MORB y que fue afectada hasta un 18% fusión parcial durante su formación. La ferritchromita tiene #Cr 0.93-1.00 que indica un origen metamórfico. La composición química de roca total indica que los protolitos de las rocas metasedimentarias consisten de lutita, grauvaca y arenita. La metapelita y metapsamita tienen un contenido de SiO2 (69-78% y 80-96% ) y de Al2O3 (9-13% y 1-8%). La abundancia de ∑REE son variables en los metasedimentos (9-178 ppm). Presentan patrones de REE normalizados a condrita con una tendencia más fraccionada que los de las rocas metamáficas, con valores en las relaciones LaN/YbN de 3-16. Las rocas metasedimentarias tienen anomalías de europio negativa (Eu/Eu* 0.67). Los datos obtenidos sugieren que los protolitos de las rocas metasedimentarias derivan de fuentes mixtas con una composición ígnea félsica-básica. (Ti/Nb 200-400). Según los valores de las relaciones de los elementos traza Th/Sc y Zr/Sc de 0.2-3.6 y 0.2-220, respectivamente se sugiere un ambiente de depósito para los protolitos de margen continental activo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Iberian Variscides several first order arcuate structures have been considered. In spite of being highly studied their characterization, formation mechanisms and even existence is still debatable. Themain Ibero-Armorican Arc (IAA) is essentially defined by a predominantNW–SE trend in the Iberian branch and an E–Wtrend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previousmajor one (IAA). Whatever themodels, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian — Carboniferous polyphasic indentation of a Gondwana promontory. In thismodel the CA is essentially a thin-skinned arc,while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser ablation ICP-MS U–Pb analyses were conducted on detrital zircons of Triassic sandstone and conglomerate from the Lusitanian basin in order to: i) document the age spectra of detrital zircon; ii) compare U–Pb detrital zircon ages with previous published data obtained from Upper Carboniferous, Ordovician, Cambrian and Ediacaran sedimentary rocks of the pre-Mesozoic basement of western Iberia; iii) discuss potential sources; and iv) test the hypothesis of sedimentary recycling. U–Pb dating of zircons established a maximum depositional age for this deposit as Permian (ca. 296Ma),which is about sixty million years older compared to the fossil content recognized in previous studies (Upper Triassic). The distribution of detrital zircon ages obtained points to common source areas: the Ossa–Morena and Central Iberian zones that outcrop in and close to the Porto–Tomar fault zone. The high degree of immaturity and evidence of little transport of the Triassic sediment suggests that granite may constitute primary crystalline sources. The Carboniferous age of ca. 330 Ma for the best estimate of crystallization for a granite pebble in a Triassic conglomerate and the Permian–Carboniferous ages (ca. 315Ma) found in detrital zircons provide evidence of the denudation of Variscan and Cimmerian granites during the infilling of continental rift basins in western Iberia. The zircon age spectra found in Triassic strata are also the result of recycling from the Upper Carboniferous Buçaco basin,which probably acted as an intermediate sediment repository.U–Pb data in this study suggest that the detritus from the Triassic sandstone and conglomerate of the Lusitanian basin is derived fromlocal source areas with features typical of Gondwana,with no sediment from external sources from Laurussia or southwestern Iberia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated interpretation of the late Paleozoic structural and geochronological record of the Iberian Massif is presented and discussed under the perspective of a Gondwana-Laurussia collision giving way to the Variscan orogen. Compressional and extensional structures developed during the building of the Variscan orogenic crust of Iberia are linked together into major tectonic events operating at lithosphere scale. A review of the tectonometamorphic and magmatic evolution of the IberianMassif reveals backs and forths in the overall conver- gence between Gondwana and Laurussia during theamalgamation of Pangea in late Paleozoic times. Stages dom- inated by lithosphere compression are characterized by subduction, both oceanic and continental, development of magmatic arcs, (over- and under-) thrusting of continental lithosphere, and folding. Variscan convergence re- sulted in the eventual transference of a large allochthonous set of peri-Gondwanan terranes, the Iberian Allochthon, onto the Gondwana mainland. The Iberian Allochthon bears the imprint of previous interaction be- tween Gondwana and Laurussia, including their juxtaposition after the closure of the Rheic Ocean in Lower De- vonian times. Stages governed by lithosphere extension are featured by the opening of two short-lived oceanic basins that dissected previous Variscan orogenic crust, first in the Lower-Middle Devonian, following the closure of the Rheic Ocean, and then in the early Carboniferous, following the emplacement of the peri-Gondwanan allochthon. An additional, major intra-orogenic extensional event in the early-middle Carboniferous dismem- bered the Iberian Allochthon into individual thrust stacks separated by extensional faults and domes. Lateral tec- tonics played an important role through the Variscan orogenesis, especially during the creation of new tectonic blocks separated by intracontinental strike-slip shear zones in the late stages of continental convergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

U–Pb geochronological study of zircons from nodular granites and Qtz-diorites comprising part of Variscan high- grade metamorphic complexes in Gredos massif (Spanish Central System batholith) points out the significant presence of Cambro-Ordovician protoliths among the Variscan migmatitic rocks that host the Late Carboniferous intrusive granitoids. Indeed, the studied zone was affected by two contrasted tectono-magmatic episodes, Car- boniferous (Variscan) and Cambro-Ordovician. Three main characteristics denote a close relation between the Cambro-Ordovician protholiths of the Prado de las Pozas high-grade metamorphic complex, strongly reworked during the Variscan Orogeny, and other Cambro-Ordovician igneous domains in the Central Iberian Zone of the Iberian Massif: (1) geochemical features show the ferrosilicic signature of nodular granites. They plot very close to the average analysis of themetavolcanic rocks of the Ollo de Sapo formation (Iberia). Qtz-diorites present typical calc-alkaline signatures and are geochemically similar to intermediate cordilleran granitoids. (2) Both Qtz-diorite and nodular granite samples yield a significant population of Cambro-Ordovician ages, ranging between 483 and 473 Ma and between 487 and 457 Ma, respectively. Besides, (3) the abundance of zircon inher- itance observed on nodular granites matches the significant component of inheritance reported on Cambro- Ordovician metagranites and metavolcanic rocks of central and NW Iberia. The spatial and temporal coincidence of both peraluminous and intermediate granitoids, and specifically in nodular granites and Qtz-diorite enclaves of the Prado de las Pozas high-grade complex, is conducive to a common petrogenetic context for the formation of both magmatic types. Tectonic and geochemical characteristics describe the activity of a Cambro-Ordovician arc-back-arc tectonic set- ting associated with the subduction of the Iapetus–Tornquist Ocean and the birth of the Rheic Ocean. The exten- sional setting is favorable for the generation, emplacement, and fast rise of subduction-related cold diapirs, supported by the presence of typical calc-alkaline cordilleran granitoids contemporary with ferrosilicic volcanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial con- tinental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to ex- plain the processes in place during the transition froman extension-dominated state (D2) to a compression-dom- inated one (D3).Wereveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facil- itating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intru- sion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel re- gion, the D3 Tamames-Marofa-Sátão synform. Newdating of syn-orogenic granitoids (SHRIMP U\\Pb zircon dat- ing) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331–311 Ma, with maximum tectonomagmatic activity at ca. 321–317 Ma. The capture and apparent cessation of movement of the Pinhel shear zone occurred at ca. 317– 311 Ma.