268 resultados para GARCH-M
Resumo:
Mestrado em Contabilidade e Análise Financeira
Resumo:
Mestrado em Contabilidade e Análise Financeira,
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2015.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Agronegócios, 2016.
Resumo:
A presente dissertação visa uma aplicação de séries temporais, na modelação do índice financeiro FTSE100. Com base na série de retornos, foram estudadas a estacionaridade através do teste Phillips-Perron, a normalidade pelo Teste Jarque-Bera, a independência analisada pela função de autocorrelação e pelo teste de Ljung-Box, e utilizados modelos GARCH, com a finalidade de modelar e prever a variância condicional (volatilidade) da série financeira em estudo. As séries temporais financeiras apresentam características peculiares, revelando períodos mais voláteis do que outros. Esses períodos encontram-se distribuídos em clusters, sugerindo um grau de dependência no tempo. Atendendo à presença de tais grupos de volatilidade (não linearidade), torna-se necessário o recurso a modelos heterocedásticos condicionais, isto é, modelos que consideram que a variância condicional de uma série temporal não é constante e dependente do tempo. Face à grande variabilidade das séries temporais financeiras ao longo do tempo, os modelos ARCH (Engle, 1982) e a sua generalização GARCH (Bollerslev, 1986) revelam-se os mais adequados para o estudo da volatilidade. Em particular, estes modelos não lineares apresentam uma variância condicional aleatória, sendo possível, através do seu estudo, estimar e prever a volatilidade futura da série. Por fim, é apresentado o estudo empírico que se baseia numa proposta de modelação e previsão de um conjunto de dados reais do índice financeiro FTSE100.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop
Resumo:
This paper applies two measures to assess spillovers across markets: the Diebold Yilmaz (2012) Spillover Index and the Hafner and Herwartz (2006) analysis of multivariate GARCH models using volatility impulse response analysis. We use two sets of data, daily realized volatility estimates taken from the Oxford Man RV library, running from the beginning of 2000 to October 2016, for the S&P500 and the FTSE, plus ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index, from 3 January 2005 to 31 January 2015. Both data sets capture both the Global Financial Crisis (GFC) and the subsequent European Sovereign Debt Crisis (ESDC). The spillover index captures the transmission of volatility to and from markets, plus net spillovers. The key difference between the measures is that the spillover index captures an average of spillovers over a period, whilst volatility impulse responses (VIRF) have to be calibrated to conditional volatility estimated at a particular point in time. The VIRF provide information about the impact of independent shocks on volatility. In the latter analysis, we explore the impact of three different shocks, the onset of the GFC, which we date as 9 August 2007 (GFC1). It took a year for the financial crisis to come to a head, but it did so on 15 September 2008, (GFC2). The third shock is 9 May 2010. Our modelling includes leverage and asymmetric effects undertaken in the context of a multivariate GARCH model, which are then analysed using both BEKK and diagonal BEKK (DBEKK) models. A key result is that the impact of negative shocks is larger, in terms of the effects on variances and covariances, but shorter in duration, in this case a difference between three and six months.
Resumo:
En este documento se estima una medida de la incertidumbre inflacionaria. Un modelo de inflación señala incertidumbre cuando los errores de pronóstico son heteroscedásticos. Por medio de la especificación de una ecuación GARCH (Generalized Autoregressive Conditional Heteroscedasticity), para la varianza del término de error de un modelo de inflación, es posible estimar una proxy de incertidumbre inflacionaria. La estimación simultánea del modelo de inflación y de la ecuación GARCH, produce un nuevo modelo de inflación en el cual los errores de pronóstico son homocedásticos. Existe consenso en la literatura económica en que hay una correlación positiva entre incertidumbre inflacionaria y la magnitud de la tasa de inflación, lo cual, como lo señaló Friedman (1977), representa uno de los costos asociados con la persistencia inflacionaria. Esto es porque tal incertidumbre dificulta la toma de decisiones óptimas por parte de los agentes económicos.La evidencia empírica, para el periodo 1954:01-2002:08, apoya la hipótesis de que para el caso de Costa Rica mientras mayor es la inflación mayor es la incertidumbre respecto a esta variable. En los últimos siete años (1997-2002) la incertidumbre presenta la variación media más baja de todo el periodo. Además, se identifica un efecto asimétrico de la inflación sobre la incertidumbre inflacionaria, es decir, la incertidumbre inflacionaria tiende a incrementarse más para el siguiente periodo cuando la inflación pronosticada está por debajo de la inflación actual, que cuando la inflación pronosticada está por arriba de la tasa observada de inflación. Estos resultados tienen una clara implicación para la política monetaria. Para minimizar la dificultad que la inflación causa en la toma óptima de decisiones de los agentes económicos es necesario perseguir no solamente un nivel bajo de inflación sino que también sea estable.AbstractThis paper estimates a measure of inflationary uncertainty. An inflation model signals uncertainty when the forecast errors are heteroskedastic. By the specification of a GARCH (Generalized Autoregressive Conditional Heteroscedasticity) equation, for the variance of the error term of the inflation model, it is possible to estimate a proxy for inflationary uncertainty. By the simultaneous estimation of the inflation model and the GARCH equation, a new inflation model is obtained in which the forecast errors are homocedastic. Most economists agree that there is a positive correlation between inflationary uncertainty and the magnitude of the inflation rate, which, as was pointed out by Friedman (1977), represents one of costs associated with the persistence of inflation. This is because such uncertainty clouds the decision-making process of consumers and investors.The empirical evidence for the period 1954:01-2002:08 confirms that in the case of Costa Rica inflationary uncertainty increases as inflation rises. In the last seven years(1997-2002) the uncertainty present the mean variation most small of the period. In addition, inflation has an asymmetric effect on inflationary uncertainty. That is, when the inflation forecast is below the actual inflation, inflationary uncertainty increases for the next period. The opposite happens when the inflation forecast is above the observed rate of inflation. Besides, the absolute value of the change on uncertainty is greater in the first case than the second. These results have a clear implication for monetary policy. To minimize the disruptions that inflation causes to the economic decision-making process, it is necessary to pursue, not only a low level of inflation, but a stable one as well.
Resumo:
Este documento evalúa el comportamiento de diferentes métodos (paramétrico, no paramétricos y semi-paramétricos) para estimar el VaR (valor en riesgo) de un portafolio representativo para 7 países latinoamericanos. El cálculo del VaR implica la estimación del i-esimo percentil de la distribución del valor futuro del valor de un portafolio. Los resultados no muestran la existencia de un método que se comporte mejor que los demás. Con un nivel de confianza del 95% los modelos paramétricos que emplean el EWMA se desempeñan en general bien así como con el TGARCH, pero estos modelos tienen un comportamiento pobre cuando la significancia considerada es del 1%.
Resumo:
A la hora de estudiar el valor en riesgo de una cartera, el método univariante puede ser considerado como una sobre simplificación de la realidad. Después de haber experimentado la mayor y más larga crisis financiera de la historia, los mercados buscan una manera efectiva de medir el riesgo. En este estudio haremos un repaso de las principales formas de estimar el VaR y CVaR. El objetivo principal es establecer un indicador cualitativo que nos permita comparar entre los diferentes modelos. Los resultados muestran que la simulación histórica ponderada con un GARCH(1,1) optimiza el control del riesgo.
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
Las investigaciones relativas al ratio óptimo de cobertura con futuros de una cartera que replica un índice de renta variable se han llevado a cabo hasta la fecha mediante técnicas econométricas. Los modelos aplicados han ido perfeccionando sus especificaciones, pero todos ellos parten de unos supuestos que se alejan del mundo real, ya que no consideran el pago discreto de dividendos y se basan en una serie del futuro de próximo vencimiento que presenta saltos, al estar compuesta por mini-series encadenadas de futuros de distinto vencimiento. Como consecuencia de estas limitaciones, aunque la eficacia de la cobertura de los modelos econométricos puede considerarse satisfactoria en términos generales, se producen errores significativos en algunos puntos de la serie. La principal aportación de esta tesis a la investigación académica y a la práctica profesional de la gestión de carteras es la definición de un Modelo Algebraico de Cobertura (MAC) que no está basado en técnicas econométricas, es más sencillo de aplicar y superior en resultados104 a los modelos econométricos más utilizados hasta la fecha (MCO, ECM y GARCH) 105. El modelo MAC parte del supuesto de mercado eficiente y de la consideración de un horizonte temporal diario de la cobertura...