973 resultados para GAMMA IRRADIATION
Resumo:
The tetrachlorocuprate(II) ion can crystallize in two different structures with the piperazinium dication (pipzH(2)). Both structures contain discrete CuCl42- species. A yellow compound (pipzH(2))[CuCl4]. 2H(2)O (1) is monoclinic (C2/c, Z = 4, a = 10.538(3) Angstrom, b = 7.4312(5) Angstrom, c = 17.281(4) Angstrom, beta = 111.900(10)degrees) and contains the CuCl42- ion as a distorted tetrahedron. A green compound (pipzH(2))(2)[CuCl4]. Cl-2. 3H(2)O (2) is triclinic (P (1) over bar, Z = 2, a = 9.264(3) Angstrom, b = 10.447(2) Angstrom, c = 11.366(2) Angstrom, alpha = 68.38 degrees, beta = 82.86(2)degrees, gamma = 83.05(2)degrees) and contains the CuCl42- ion with a square planar geometry. This latter compound shows thermo/photochromism, changing from green to yellow upon heating or laser irradiation.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Carbon formation on Ni/gamma-Al2O3 catalysts and its kinetics during methane reforming with carbon dioxide was studied in the temperature range of 500-700 degrees C using a thermogravimetric analysis technique. The activation energies of methane cracking, carbon gasification in CO2, as well as carbon deposition in CO2-CH4 reforming were obtained. The results show that the activation energy for carbon gasification is larger than that of carbon formation in methane cracking and that the activation energy of coking in CO2-CH4 reforming is also larger than that of methane decomposition to carbon. The dependencies of coking rate on partial pressures of CH4 and CO2 indicate that methane decomposition is the main route for carbon deposition. A mechanism and kinetic model for carbon deposition is proposed.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) was investigated using chemical and mechanical analyses. The polymer was found to form an insoluble network with a dose of gelation of 15.8 kGy. Tensile and glass transition temperature measurements indicated the predominance of crosslinking, with optimal elastomeric properties reached in the dose range of 120 to 200 kGy. Photoacoustic FTIR spectroscopy CPAS) showed the formation of new carboxylic acid end groups on irradiation. These new end groups were shown to decrease the thermal oxidative stability of the crosslinked network as determined by thermal gravimetric analysis. Electron spin resonance (ESR) studies of the polymer at 77 K indicated the presence of radical precursors. A G-value of 1.1 was determined for radical production at 77 K. Comparison of radical concentrations for a copolymer with a different mole ratio of PMVE, indicated that the PMVE units contribute to scission reactions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Carbon dioxide reforming of methane into syngas over Ni/gamma-Al2O3 catalysts was systematically studied. Effects of reaction parameters on catalytic activity and carbon deposition over Ni/gamma-Al2O3 catalysts were investigated. It is found that reduced NiA1204, metal nickel, and active species of carbon deposited were the active sites for this reaction. Carbon deposition on Ni/gamma Al2O3 varied depending on the nickel loading and reaction temperature and is the major cause of catalyst deactivation. Higher nickel loading produced more coke on the catalysts, resulting in rapid deactivation and plugging of the reactor. At 5 wt % Ni/gamma-Al2O3 catalyst exhibited high activity and much lesser magnitude of deactivation in 140 h. Characterization of carbon deposits on the catalyst surface revealed that there are two kinds of carbon species (oxidized and -C-C-) formed during the reaction and they showed different reactivities toward hydrogenation and oxidation. Kinetic studies showed that the activation energy for CO production in this reaction amounted to 80 kJ/mol and the rate of CO production could be described by a Langmuir-Hinshelwood model.
Resumo:
Catalytic reforming of methane with carbon dioxide was studied in a fixed-bed reactor using unpromoted and promoted Ni/gamma-Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline-earth metal oxides (MgO, CaO) and rare-earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO-, La2O3- and CeO2-promoted Ni/gamma-Al2O3 catalysts exhibited higher stability whereas MgO- and Na2O-promoted catalysts demonstrated lower activity and significant deactivation. Metal-oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. (C) 2000 Society of Chemical Industry.
Resumo:
Perforin (pfp) and interferon-gamma (IFN-gamma) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-gamma were significantly less proficient than pfp- or IFN-gamma -deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-gamma -deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-gamma appeared to play an early role in protection from metastasis, Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1(+) T cells, Herein, both pfp and IFN-gamma played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells, Further analysis demonstrated that IFN-gamma, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-gamma, and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice, (C) 2001 by The American Society of Hematology.
Resumo:
Epilepsies affect at least 2% of the population at some time in life, and many forms have genetic determinants(1,2). We have found a mutation in a gene encoding a GABA, receptor subunit in a large family with epilepsy. The two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS), There is a recognized genetic: relationship between FS and CAE, yet the two syndromes have different ages of onset, and the physiology of absences and convulsions is distinct. This suggests the mutation has age-dependent effects on different neuronal networks that influence the expression of these clinically distinct, but genetically related, epilepsy phenotypes. We found that the mutation in GABRG2 (encoding the gamma2-subunit) abolished in vitro sensitivity to diazepam, raising the possibility that endozepines do in fact exist and have a physiological role in preventing seizures.
Resumo:
The nuclear magnetic resonance (NMR) spin-spin relaxation time (T-2) is related to the radiation-dependent concentration of polymer formed in polymer gel dosimeters manufactured from monomers in an aqueous gelatin matrix. Changes in T-2 with time post-irradiation have been reported in the literature but their nature is not fully understood. We investigated those changes with time after irradiation using FT-Raman spectroscopy and the precise determination of T-2 at high magnetic field in a polymer gel dosimeter, A model of fast exchange of magnetization taking into account ongoing gelation and strengthening of the gelatin matrix as well as the polymerization of the monomers with time is presented. Published data on the changes of T-2 in gelatin gels as a function of post-manufacture time are used and fitted closely by the model presented. The same set of parameters characterizing the variations of T-2 in gelatin gels and the increasing concentration of polymer determined from Fr-Raman spectroscopy are used successfully in the modelling of irradiated polymer gel dosimeters. Minimal variations in T-2 in an irradiated PAG dosimeter are observed after 13 h.
Resumo:
Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.
Resumo:
The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perform (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.
Resumo:
The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.
Resumo:
The non-obese diabetic (NOD) mouse is a unique and invaluable model of autoimmune disease, in particular type I diabetes. Bone marrow transplantation as a therapy for type I diabetes has been explored in NOD mice. NOD mice require higher doses of conditioning irradiation for successful allogeneic bone marrow transplantation, suggesting that NOD hematopoietic cells are radioresistant compared to those of other mouse strains. However, studies of hematopoietic reconstitution in NOD mice are hampered by the lack of mice bearing a suitable cell-surface marker that would allow transferred cells or their progeny to be distinguished. In order to monitor hematopoietic reconstitution in NOD mice we generated congenic NOD mice that carry the alternative allelic form of the pan-leukocyte alloantigen CD45. Following irradiation and congenic bone marrow transplantation, we found that the myeloid lineage was rapidly reconstituted by cells of donor origin but substantial numbers of recipient T lymphocytes persisted even after supra-lethal irradiation. This indicates that radiation resistance in the NOD hematopoietic compartment is a property primarily of mature T lymphocytes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.