954 resultados para Fractional laplacian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we applied the Riemann-Liouville approach and the fractional Euler-Lagrange equations in order to obtain the fractional-order nonlinear dynamics equations of a two link robotic manipulator. The aformentioned equations have been simulated for several cases involving: integer and non-integer order analysis, with and without external forcing acting and some different initial conditions. The fractional nonlinear governing equations of motion are coupled and the time evolution of the angular positions and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the dynamics equations of a two link robotic manipulator have been modeled with the fractional Euler-Lagrange dynamics approach. The results reveal that the fractional-nonlinear robotic manipulator can exhibit different and curious behavior from those obtained with the standard dynamical system and can be useful for a better understanding and control of such nonlinear systems. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of fractional calculus when modeling phenomena allows new queries concerning the deepest parts of the physical laws involved in. Here we will be dealing with an apparent paradox in which the time of transference from zero in a system with fractional derivatives can be strictly shortened relatively to the minimal time transference done in an equivalent system in the frame of the entire derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the huge number of works considering fractional derivatives or derivatives on time scales some basic facts remain to be evaluated. Here we will be showing that the fractional derivative of monomials is in fact an entire derivative considered on an appropriate time scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to refine the solution given by the classical logistic equation and extend its range of applications in the study of tumor dynamics, we propose and solve a generalization of this equation, using the so-called Fractional Calculus, i.e., we replace the ordinary derivative of order 1, in one version of the usual equation, by a non-integer derivative of order 0 < α < 1, and recover the classical solution as a particular case. Finally, we analyze the applicability of this model to describe the growth of cancer tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the energy decay for a class of plate equations with memory and lower order perturbation of p-Laplacian type, utt+?2u-?pu+?0tg(t-s)?u(s)ds-?ut+f(u)=0inOXR+, with simply supported boundary condition, where O is a bounded domain of RN, g?>?0 is a memory kernel that decays exponentially and f(u) is a nonlinear perturbation. This kind of problem without the memory term models elastoplastic flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fractional boundary value problem D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = 0 , where 2 < α ≤ 3 and D 0 + α is the Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem in partially ordered metric spaces. The autonomous case of this problem was studied in the paper [Zhao et al., Abs. Appl. Anal., to appear], but in Zhao et al. (to appear), the question of uniqueness of the solution is not treated. We also present some examples where we compare our results with the ones obtained in Zhao et al. (to appear). 2010 Mathematics Subject Classification: 34B15

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] We establish the existence and uniqueness of a positive and nondecreasing solution to a singular boundary value problem of a class of nonlinear fractional differential equation. Our analysis relies on a fixed point theorem in partially ordered sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In autologous cell therapy, e.g. in melanocyte transplantation for vitiligo, a minimally invasive mode of transepidermal delivery of the isolated cells is of crucial importance to reduce potential side effects such as infections and scarring as well as to minimize the duration of sick leave.