880 resultados para Forecasting and replenishment (CPFR)
Resumo:
Hulun Lake, China’s fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (- 364±64 mm/yr, ~70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ~ net 210 Mm3/yr (equivalent to ~ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.
Resumo:
Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008–2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.
Resumo:
Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.
Resumo:
Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.
Resumo:
Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.
Resumo:
Due to the variability of wind power, it is imperative to accurately and timely forecast the wind generation to enhance the flexibility and reliability of the operation and control of real-time power. Special events such as ramps, spikes are hard to predict with traditional methods using solely recently measured data. In this paper, a new Gaussian Process model with hybrid training data taken from both the local time and historic dataset is proposed and applied to make short-term predictions from 10 minutes to one hour ahead. A key idea is that the similar pattern data in history are properly selected and embedded in Gaussian Process model to make predictions. The results of the proposed algorithms are compared to those of standard Gaussian Process model and the persistence model. It is shown that the proposed method not only reduces magnitude error but also phase error.
Resumo:
Tese de dout., Métodos Quantitativos Aplicados à Economia e à Gestão, Faculdade de Economia, Universidade do Algarve, 2008