881 resultados para Fixed Point Index


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new research project has, quite recently, been launched to clarify how different, from systems in second order number theory extending ACA 0, those in second order set theory extending NBG (as well as those in n + 3-th order number theory extending the so-called Bernays−Gödel expansion of full n + 2-order number theory etc.) are. In this article, we establish the equivalence between Δ10\bf-LFP and Δ10\bf-FP, which assert the existence of a least and of a (not necessarily least) fixed point, respectively, for positive elementary operators (or between Δn+20\bf-LFP and Δn+20\bf-FP). Our proof also shows the equivalence between ID 1 and ^ID1, both of which are defined in the standard way but with the starting theory PA replaced by ZFC (or full n + 2-th order number theory with global well-ordering).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the relativistic version of the Schrödinger equation for a point particle in one dimension with the potential of the first derivative of the delta function. The momentum cutoff regularization is used to study the bound state and scattering states. The initial calculations show that the reciprocal of the bare coupling constant is ultraviolet divergent, and the resultant expression cannot be renormalized in the usual sense, where the divergent terms can just be omitted. Therefore, a general procedure has been developed to derive different physical properties of the system. The procedure is used first in the nonrelativistic case for the purpose of clarification and comparisons. For the relativistic case, the results show that this system behaves exactly like the delta function potential, which means that this system also shares features with quantum filed theories, like being asymptotically free. In addition, in the massless limit, it undergoes dimensional transmutation, and it possesses an infrared conformal fixed point. The comparison of the solution with the relativistic delta function potential solution shows evidence of universality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present new algorithms for M-estimators of multivariate scatter and location and for symmetrized M-estimators of multivariate scatter. The new algorithms are considerably faster than currently used fixed-point and related algorithms. The main idea is to utilize a second order Taylor expansion of the target functional and to devise a partial Newton-Raphson procedure. In connection with symmetrized M-estimators we work with incomplete U-statistics to accelerate our procedures initially.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We calculate the anomalous dimensions of operators with large global charge J in certain strongly coupled conformal field theories in three dimensions, such as the O(2) model and the supersymmetric fixed point with a single chiral superfield and a W = Φ3 superpotential. Working in a 1/J expansion, we find that the large-J sector of both examples is controlled by a conformally invariant effective Lagrangian for a Goldstone boson of the global symmetry. For both these theories, we find that the lowest state with charge J is always a scalar operator whose dimension ΔJ satisfies the sum rule J2ΔJ−(J22+J4+316)ΔJ−1−(J22+J4+316)ΔJ+1=0.04067 up to corrections that vanish at large J . The spectrum of low-lying excited states is also calculable explcitly: for example, the second-lowest primary operator has spin two and dimension ΔJ+3√. In the supersymmetric case, the dimensions of all half-integer-spin operators lie above the dimensions of the integer-spin operators by a gap of order J+12. The propagation speeds of the Goldstone waves and heavy fermions are 12√ and ±12 times the speed of light, respectively. These values, including the negative one, are necessary for the consistent realization of the superconformal symmetry at large J.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we study subsystems SIDᵥ of the theory ID₁ in which fixed point induction is restricted to properly stratified formulas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides new sufficient conditions for the existence, computation via successive approximations, and stability of Markovian equilibrium decision processes for a large class of OLG models with stochastic nonclassical production. Our notion of stability is existence of stationary Markovian equilibrium. With a nonclassical production, our economies encompass a large class of OLG models with public policy, valued fiat money, production externalities, and Markov shocks to production. Our approach combines aspects of both topological and order theoretic fixed point theory, and provides the basis of globally stable numerical iteration procedures for computing extremal Markovian equilibrium objects. In addition to new theoretical results on existence and computation, we provide some monotone comparative statics results on the space of economies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Appropriate field data are required to check the reliability of hydrodynamic models simulating the dispersion of soluble substances in the marine environment. This study deals with the collection of physical measurements and soluble tracer data intended specifically for this kind of validation. The intensity of currents as well as the complexity of topography and tides around the Cap de La Hague in the center of the English Channel makes it one of the most difficult areas to represent in terms of hydrodynamics and dispersion. Controlled releases of tritium - in the form of HTO - are carried out in this area by the AREVA-NC plant, providing an excellent soluble tracer. A total of 14 493 measurements were acquired to track dispersion in the hours and days following a release. These data, supplementing previously gathered data and physical measurements (bathymetry, water-surface levels, Eulerian and Lagrangian current studies) allow us to test dispersion models from the hour following release to periods of several years which are not accessible with dye experiments. The dispersion characteristics are described and methods are proposed for comparing models against measurements. An application is proposed for a 2 dimensions high-resolution numerical model. It shows how an extensive dataset can be used to build, calibrate and validate several aspects of the model in a highly dynamic and macrotidal area: tidal cycle timing, tidal amplitude, fixed-point current data, hodographs. This study presents results concerning the model's ability to reproduce residual Lagrangian currents, along with a comparison between simulation and high-frequency measurements of tracer dispersion. Physical and tracer data are available from the SISMER database of IFREMER (www.ifremer.fr/sismer/catal). This tool for validation of models in macro-tidal seas is intended to be an open and evolving resource, which could provide a benchmark for dispersion model validation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The natural phytoplankton was monitored by means of fluorimetric equipment in Vostok Bay of the Sea of Japan. A gradual increase in the microalgae abundance was revealed in the course of the main water current, which enters the bay and leaves it. The continuous registration of chlorophyll fluorescence at a fixed point in the bay indicates the significant microscale variation of the abundance and functional state of the phytoplankton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce in this paper a method to calculate the Hessenberg matrix of a sum of measures from the Hessenberg matrices of the component measures. Our method extends the spectral techniques used by G. Mantica to calculate the Jacobi matrix associated with a sum of measures from the Jacobi matrices of each of the measures. We apply this method to approximate the Hessenberg matrix associated with a self-similar measure and compare it with the result obtained by a former method for self-similar measures which uses a fixed point theorem for moment matrices. Results are given for a series of classical examples of self-similar measures. Finally, we also apply the method introduced in this paper to some examples of sums of (not self-similar) measures obtaining the exact value of the sections of the Hessenberg matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tesis doctoral CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY constituye un conjunto de nuevas aportaciones al análisis de dos elementos básicos de la lógica fuzzy: los mecanismos de inferencia y la representación de predicados vagos. La memoria se encuentra dividida en dos partes que corresponden a los dos aspectos señalados. En la Parte I se estudia el concepto básico de «estado lógico borroso». Un estado lógico borroso es un punto fijo de la aplicación generada a partir de la regla de inferencia conocida como modus ponens generalizado. Además, un preorden borroso puede ser representado mediante los preórdenes elementales generados por el conjunto de sus estados lógicos borrosos. El Capítulo 1 está dedicado a caracterizar cuándo dos estados lógicos dan lugar al mismo preorden elemental, obteniéndose también un representante de la clase de todos los estados lógicos que generan el mismo preorden elemental. El Capítulo finaliza con la caracterización del conjunto de estados lógicos borrosos de un preorden elemental. En el Capítulo 2 se obtiene un subconjunto borroso trapezoidal como una clase de una relación de indistinguibilidad. Finalmente, el Capítulo 3 se dedica a estudiar dos tipos de estados lógicos clásicos: los irreducibles y los minimales. En el Capítulo 4, que inicia la Parte II de la memoria, se aborda el problema de obtener la función de compatibilidad de un predicado vago. Se propone un método, basado en el conocimiento del uso del predicado mediante un conjunto de reglas y de ciertos elementos distinguidos, que permite obtener una expresión general de la función de pertenencia generalizada de un subconjunto borroso que realice la función de extensión del predicado borroso. Dicho método permite, en ciertos casos, definir un conjunto de conectivas multivaluadas asociadas al predicado. En el último capítulo se estudia la representación de antónimos y sinónimos en lógica fuzzy a través de auto-morfismos. Se caracterizan los automorfismos sobre el intervalo unidad cuando sobre él se consideran dos operaciones: una t-norma y una t-conorma ambas arquimedianas. The PhD Thesis CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY is a contribution to two basic concepts of the Fuzzy Logic. It is divided in two parts, the first is devoted to a mechanism of inference in Fuzzy Logic, and the second to the representation of vague predicates. «Fuzzy Logic State» is the basic concept in Part I. A Fuzzy Logic State is a fixed-point for the mapping giving the Generalized Modus Ponens Rule of inference. Moreover, a fuzzy preordering can be represented by the elementary preorderings generated by its Fuzzy Logic States. Chapter 1 contemplates the identity of elementary preorderings and the selection of representatives for the classes modulo this identity. This chapter finishes with the characterization of the set of Fuzzy Logic States of an elementary preordering. In Chapter 2 a Trapezoidal Fuzzy Set as a class of a relation of Indistinguishability is obtained. Finally, Chapter 3 is devoted to study two types of Classical Logic States: irreducible and minimal. Part II begins with Chapter 4 dealing with the problem of obtaining a Compa¬tibility Function for a vague predicate. When the use of a predicate is known by means of a set of rules and some distinguished elements, a method to obtain the general expression of the Membership Function is presented. This method allows, in some cases, to reach a set of multivalued connectives associated to the predicate. Last Chapter is devoted to the representation of antonyms and synonyms in Fuzzy Logic. When the unit interval [0,1] is endowed with both an archimedean t-norm and a an archi-medean t-conorm, it is showed that the automorphisms' group is just reduced to the identity function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixedpoint) abstraction to the code consumer is that its validity is checked in a single pass of an abstract interpretation-based checker. A main challenge is to reduce the size of certificates as much as possible while at the same time not increasing checking time. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker. We also provide a correct checking algorithm together with sufficient conditions for ensuring its completeness. The experimental results within the CiaoPP system show that our proposal is able to greatly reduce the size of certificates in practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) is a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certificate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixed-point) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible, while at the same time not increasing checking time. Intuitively, we only include in the certificate the information which the checker is unable to reproduce without iterating. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certificate in a single pass. Based on this notion, we show how to instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixedpoint) abstraction to the code consumer is that its validity is checked in a single pass of an abstract interpretation-based checker. A main challenge is to reduce the size of certificates as much as possible while at the same time not increasing checking time. In this paper, we first introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we then instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixed-point) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible while at the same time not increasing checking time. The intuitive idea is to only include in the certifícate information that the checker is unable to reproduce without iterating. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify information which can be reconstructed by the single-pass checker. Finally, we study what the effects of reduced certificates are on the correctness and completeness of the checking process. We provide a correct checking algorithm together with sufficient conditions for ensuring its completeness. Our ideas are illustrated through a running example, implemented in the context of constraint logic programs, which shows that our approach improves state-of-the-art techniques for reducing the size of certificates.