956 resultados para Finite-time Blow
Resumo:
A method for formulating and algorithmically solving the equations of finite element problems is presented. The method starts with a parametric partition of the domain in juxtaposed strips that permits sweeping the whole region by a sequential addition (or removal) of adjacent strips. The solution of the difference equations constructed over that grid proceeds along with the addition removal of strips in a manner resembling the transfer matrix approach, except that different rules of composition that lead to numerically stable algorithms are used for the stiffness matrices of the strips. Dynamic programming and invariant imbedding ideas underlie the construction of such rules of composition. Among other features of interest, the present methodology provides to some extent the analyst's control over the type and quantity of data to be computed. In particular, the one-sweep method presented in Section 9, with no apparent counterpart in standard methods, appears to be very efficient insofar as time and storage is concerned. The paper ends with the presentation of a numerical example
Resumo:
Two mathematical models are used to simulate pollution in the Bay of Santander. The first is the hydrodynamic model that provides the velocity field and height of the water. The second gives the pollutant concentration field as a resultant. Both models are formulated in two-dimensional equations. Linear triangular finite elements are used in the Galerkin procedure for spatial discretization. A finite difference scheme is used for the time integration. At each time step the calculated results of the first model are input to the second model as field data. The efficiency and accuracy of the models are tested by their application to a simple illustrative example. Finally a case study in simulation of pollution evolution in the Bay of Santander is presented
Resumo:
Civil buildings are not specifically designed to support blast loads, but it is important to take into account these potential scenarios because of their catastrophic effects, on persons and structures. A practical way to consider explosions on reinforced concrete structures is necessary. With this objective we propose a methodology to evaluate blast loads on large concrete buildings, using LS-DYNA code for calculation, with Lagrangian finite elements and explicit time integration. The methodology has three steps. First, individual structural elements of the building like columns and slabs are studied, using continuum 3D elements models subjected to blast loads. In these models reinforced concrete is represented with high precision, using advanced material models such as CSCM_CONCRETE model, and segregated rebars constrained within the continuum mesh. Regrettably this approach cannot be used for large structures because of its excessive computational cost. Second, models based on structural elements are developed, using shells and beam elements. In these models concrete is represented using CONCRETE_EC2 model and segregated rebars with offset formulation, being calibrated with continuum elements models from step one to obtain the same structural response: displacement, velocity, acceleration, damage and erosion. Third, models basedon structural elements are used to develop large models of complete buildings. They are used to study the global response of buildings subjected to blast loads and progressive collapse. This article carries out different techniques needed to calibrate properly the models based on structural elements, using shells and beam elements, in order to provide results of sufficient accuracy that can be used with moderate computational cost.
Resumo:
Esta tesis aborda la formulación, análisis e implementación de métodos numéricos de integración temporal para la solución de sistemas disipativos suaves de dimensión finita o infinita de manera que su estructura continua sea conservada. Se entiende por dichos sistemas aquellos que involucran acoplamiento termo-mecánico y/o efectos disipativos internos modelados por variables internas que siguen leyes continuas, de modo que su evolución es considerada suave. La dinámica de estos sistemas está gobernada por las leyes de la termodinámica y simetrías, las cuales constituyen la estructura que se pretende conservar de forma discreta. Para ello, los sistemas disipativos se describen geométricamente mediante estructuras metriplécticas que identifican claramente las partes reversible e irreversible de la evolución del sistema. Así, usando una de estas estructuras conocida por las siglas (en inglés) de GENERIC, la estructura disipativa de los sistemas es identificada del mismo modo que lo es la Hamiltoniana para sistemas conservativos. Con esto, métodos (EEM) con precisión de segundo orden que conservan la energía, producen entropía y conservan los impulsos lineal y angular son formulados mediante el uso del operador derivada discreta introducido para asegurar la conservación de la Hamiltoniana y las simetrías de sistemas conservativos. Siguiendo estas directrices, se formulan dos tipos de métodos EEM basados en el uso de la temperatura o de la entropía como variable de estado termodinámica, lo que presenta importantes implicaciones que se discuten a lo largo de esta tesis. Entre las cuales cabe destacar que las condiciones de contorno de Dirichlet son naturalmente impuestas con la formulación basada en la temperatura. Por último, se validan dichos métodos y se comprueban sus mejores prestaciones en términos de la estabilidad y robustez en comparación con métodos estándar. This dissertation is concerned with the formulation, analysis and implementation of structure-preserving time integration methods for the solution of the initial(-boundary) value problems describing the dynamics of smooth dissipative systems, either finite- or infinite-dimensional ones. Such systems are understood as those involving thermo-mechanical coupling and/or internal dissipative effects modeled by internal state variables considered to be smooth in the sense that their evolutions follow continuos laws. The dynamics of such systems are ruled by the laws of thermodynamics and symmetries which constitutes the structure meant to be preserved in the numerical setting. For that, dissipative systems are geometrically described by metriplectic structures which clearly identify the reversible and irreversible parts of their dynamical evolution. In particular, the framework known by the acronym GENERIC is used to reveal the systems' dissipative structure in the same way as the Hamiltonian is for conserving systems. Given that, energy-preserving, entropy-producing and momentum-preserving (EEM) second-order accurate methods are formulated using the discrete derivative operator that enabled the formulation of Energy-Momentum methods ensuring the preservation of the Hamiltonian and symmetries for conservative systems. Following these guidelines, two kind of EEM methods are formulated in terms of entropy and temperature as a thermodynamical state variable, involving important implications discussed throughout the dissertation. Remarkably, the formulation in temperature becomes central to accommodate Dirichlet boundary conditions. EEM methods are finally validated and proved to exhibit enhanced numerical stability and robustness properties compared to standard ones.
Resumo:
This paper presents a Finite Element Model, which has been used for forecasting the diffusion of innovations in time and space. Unlike conventional models used in diffusion literature, the model considers the spatial heterogeneity. The implementation steps of the model are explained by applying it to the case of diffusion of photovoltaic systems in a local region in southern Germany. The applied model is based on a parabolic partial differential equation that describes the diffusion ratio of photovoltaic systems in a given region over time. The results of the application show that the Finite Element Model constitutes a powerful tool to better understand the diffusion of an innovation as a simultaneous space-time process. For future research, model limitations and possible extensions are also discussed.
Resumo:
Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists.
Resumo:
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
Resumo:
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.
Resumo:
We report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.
Resumo:
Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented.
Resumo:
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Resumo:
What is the time-optimal way of using a set of control Hamiltonians to obtain a desired interaction? Vidal, Hammerer, and Cirac [Phys. Rev. Lett. 88, 237902 (2002)] have obtained a set of powerful results characterizing the time-optimal simulation of a two-qubit quantum gate using a fixed interaction Hamiltonian and fast local control over the individual qubits. How practically useful are these results? We prove that there are two-qubit Hamiltonians such that time-optimal simulation requires infinitely many steps of evolution, each infinitesimally small, and thus is physically impractical. A procedure is given to determine which two-qubit Hamiltonians have this property, and we show that almost all Hamiltonians do. Finally, we determine some bounds on the penalty that must be paid in the simulation time if the number of steps is fixed at a finite number, and show that the cost in simulation time is not too great.
Resumo:
The adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length was studied with Canonical Ensemble (NVT) and Gibbs Ensemble Monte Carlo Simulations (GEMC). The Canonical Ensemble was a collection of cubic simulation boxes in which a finite pore resides, while the Gibbs Ensemble was that of the pore space of the finite pore. Argon was used as a model for Lennard-Jones fluids, while the adsorbent was modelled as a finite carbon slit pore whose two walls were composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. The Lennard-Jones (LJ) 12-6 potential model was used to compute the interaction energy between two fluid particles, and also between a fluid particle and a carbon atom. Argon adsorption isotherms were obtained at 87.3 K for pore widths of 1.0, 1.5 and 2.0 nm using both Canonical and Gibbs Ensembles. These results were compared with isotherms obtained with corresponding infinite pores using Grand Canonical Ensembles. The effects of the number of cycles necessary to reach equilibrium, the initial allocation of particles, the displacement step and the simulation box size were particularly investigated in the Monte Carlo simulation with Canonical Ensembles. Of these parameters, the displacement step had the most significant effect on the performance of the Monte Carlo simulation. The simulation box size was also important, especially at low pressures at which the size must be sufficiently large to have a statistically acceptable number of particles in the bulk phase. Finally, it was found that the Canonical Ensemble and the Gibbs Ensemble both yielded the same isotherm (within statistical error); however, the computation time for GEMC was shorter than that for canonical ensemble simulation. However, the latter method described the proper interface between the reservoir and the adsorbed phase (and hence the meniscus).
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed. © 2004 Elsevier Inc. All rights reserved.
Resumo:
All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.