907 resultados para Fiber-Loop Ring-Down Spectroscopy (FLRDS)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. J. Cell. Physiol. 9999: 1-12, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work investigates pure ionic liquids (ILs) derived from an imidazolium ring with different carbonic chains and halides or bis(trifluoromethanesulfonilimide) (TFSI-) as anions, using X-ray absorption near edge spectroscopy (XANES) at different energies (N, S, O, F, and Cl edges) to probe the interionic interactions. XANES data show that the interaction with the anion is weaker when the cation is an imidazolium than when the salt is formed by smaller cations, as lithium, independently of the length of the carbonic chain attached to the imidazolium cation. The results also show that, for all studied as, it is not observed any influence of the anion on the XANES spectra of the cation, nor the opposite. 1-Methylimidazolium with Cl-, a small and strongly coordinating anion, presents in the N K XANES spectrum a splitting of the band corresponding to nitrogen in the imidazolic ring, indicating two different chemical environments. For this cation with TFSI-, on the contrary, this splitting was not observed, showing that the anion has a weaker interaction with the imidazolic ring, even without a lateral carbonic chain.
Resumo:
Background: Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra-and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results: Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U. mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2: 1 or 4: 1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber. Conclusion: Cellobiohydrolases both with and without a CBD occur in most fungal genomes where both enzymes are secreted, and likely participate in cellulose degradation. The fact that only Cbh1 binds to the substrate and in combination with CelD exhibits strong synergy only when Cbh1 is present in excess, suggests that Cbh1 unties enough chains from cellulose fibers, thus enabling processive access of CelD.
Resumo:
Objective: Raman spectroscopy has been employed to discriminate between malignant (basal cell carcinoma [BCC] and melanoma [MEL]) and normal (N) skin tissues in vitro, aimed at developing a method for cancer diagnosis. Background data: Raman spectroscopy is an analytical tool that could be used to diagnose skin cancer rapidly and noninvasively. Methods: Skin biopsy fragments of similar to 2 mm(2) from excisional surgeries were scanned through a Raman spectrometer (830 nm excitation wavelength, 50 to 200 mW of power, and 20 sec exposure time) coupled to a fiber optic Raman probe. Principal component analysis (PCA) and Euclidean distance were employed to develop a discrimination model to classify samples according to histopathology. In this model, we used a set of 145 spectra from N (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues. Results: We demonstrated that principal components (PCs) 1 to 4 accounted for 95.4% of all spectral variation. These PCs have been spectrally correlated to the biochemicals present in tissues, such as proteins, lipids, and melanin. The scores of PC2 and PC3 revealed statistically significant differences among N, BCC, and MEL (ANOVA, p < 0.05) and were used in the discrimination model. A total of 28 out of 30 spectra were correctly diagnosed as N, 93 out of 96 as BCC, and 13 out of 19 as MEL, with an overall accuracy of 92.4%. Conclusions: This discrimination model based on PCA and Euclidean distance could differentiate N from malignant (BCC and MEL) with high sensitivity and specificity.
Resumo:
The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.
Resumo:
The effects of laser focusing and fluence on LIBS analysis of pellets of plant leaves was evaluated. A Q-switched Nd:YAG laser (5ns, 10Hz, 1064nm) was used and the emission signals were collected by lenses into an optical fiber coupled to a spectrometer with Echelle optics and ICCD. Data were acquired from the accumulation of 20 laser pulses at 2.0 mu s delay and 5.0 mu s integration time gate. The emission signal intensities increased with both laser fluence and spot size. Higher sensitivities for Ca, K, Mg, P, Al, B, Cu, Fe, Mn, and Zn determinations were observed for fluences in the range from 25 to 60Jcm(-2). Coefficients of variation of site-to-site measurements were generally lower than 10% (n=30 sites, 20 laser pulses/site) for a fluence of 50Jcm(-2) and 750 mu m spot size. For most elements, there is an indication that accuracy is improved with higher fluences. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.
Resumo:
In this thesis methods of EPR spectroscopy were used to investigate polyion-counterion interactions in polyelectrolyte solutions. The fact that EPR techniques are local methods is exploited and by employing spin-carrying (i.e., EPR-active) probe ions it is possible to examine polyelectrolytes from the counterions point of view. It was possible to gain insight into i) the dynamics and local geometry of counterion attachment, ii) conformations and dynamics of local segments of the polyion in an indirect manner, and iii) the spatial distribution of spin probe ions that surround polyions in solution. Analysis of CW EPR spectra of dianion nitroxide spin probe Fremys salt (FS, potassium nitrosodisulfonate) in solutions of cationic PDADMAC polyelectrolyte revealed that FS ions and PDADMAC form transient ion pairs with a lifetime of less than 1 ns. This effect was termed as dynamic electrostatic attachment (DEA). By spectral simulation taking into account the rotational dynamics as a uniaxial Brownian reorientation, also the geometry of the attached state could be characterized. By variation of solvent, the effect of solvent viscosity and permittivity were investigated and indirect information of the polyelectrolyte chain motion was obtained. Furthermore, analysis of CW EPR data also indicates that in mixtures of organic solvent/water PDADMAC chains are preferentially solvated by the organic solvent molecules, while in purely aqueous mixtures the PDADMAC chain segments were found in different conformations depending on the concentration ratio R of FS counterions to PDADMAC repeat units.Broadenings in CW EPR spectra of FS ions were assigned to spin-exchange interaction and hence contain information on the local concentrations and distributions of the counterions. From analysis of these broadenings in terms of a modified cylindrical cell approach of polyelectrolyte theory, radial distribution functions for the FS ions in the different solvents were obtained. This approach breaks down in water above a threshold value of R, which again indicates that PDADMAC chain conformations are altered as a function of R. Double electron-electron resonance (DEER) measurements of FS ions were carried out to probe the distribution of attached counterions along polyelectrolyte chains. For a significant fraction of FS spin probes in solution with a rigid-rod model polyelectrolyte containing charged Ru2+-centers, a bimodal distance distribution was found that nicely reproduced the spacings of direct and next-neighbor Ru2+-centers along the polyelectrolyte: 2.35 and 4.7 nm. For the system of FS/PDADMAC, DEER data could be simulated by assuming a two-state distribution of spin probes, one state corresponding to a homogeneous (3-dimensional) distribution of spin probes in the polyelectrolyte bulk and the other to a linear (1-dimensional) distribution of spin probes that are electrostatically condensed along locally extended PDADMAC chain segments. From this analysis it is suggested that the PDADMAC chains form locally elongated structures of a size of at least ~5 nm.
Resumo:
X-ray laser fluorescence spectroscopy of the 2s-2p transition in Li-like ions is promising to become a widely applicable tool to provide information on the nuclear charge radii of stable and radioactive isotopes. For performing such experiments at the Experimental Storage Ring ESR, and the future NESR within the FAIR Project, a grazing incidence pumped (GRIP) x-ray laser (XRL) was set up at GSI Darmstadt using PHELIX (Petawatt High Energy Laser for heavy Ions eXperiments). The experiments demonstrated that lasing using the GRIP geometry could be achieved with relatively low pump energy, a prerequisite for higher repetition rate. In the first chapter the need of a plasma XRL is motivated and a short history of the plasma XRL is presented. The distinctive characteristic of the GRIP method is the controlled deposition of the pump laser energy into the desired plasma density region. While up to now the analysis performed were mostly concerned with the plasma density at the turning point of the main pump pulse, in this thesis it is demonstrated that also the energy deposition is significantly modified for the GRIP method, being sensitive in different ways to a large number of parameters. In the second chapter, the theoretical description of the plasma evolution, active medium and XRL emission properties are reviewed. In addition an innovative analysis of the laser absorption in plasma which includes an inverse Bremsstrahlung (IB) correction factor is presented. The third chapter gives an overview of the experimental set-up and diagnostics, providing an analytical formula for the average and instantaneous traveling wave speed generated with a tilted, on-axis spherical mirror, the only focusing system used up to now in GRIP XRL. The fourth chapter describes the experimental optimization and results. The emphasis is on the effect of the incidence angle of the main pump pulse on the absorption in plasma and on output and gain in different lasing lines. This is compared to the theoretical results for two different incidence angles. Significant corrections for the temperature evolution during the main pump pulse due to the incidence angle are demonstrated in comparison to a simple analytical model which does not take into account the pumping geometry. A much better agreement is reached by the model developed in this thesis. An interesting result is also the appearance of a central dip in the spatially resolved keV emission which was observed in the XRL experiments for the first time and correlates well with previous near field imaging and plasma density profile measurements. In the conclusion also an outlook to the generation of shorter wavelength XRL’s is given.
Resumo:
Introduction. Down Syndrome (DS) is the most known autosomal trisomy, due to the presence in three copies of chromosome 21. Many studies were designed to identify phenotypic and clinical consequences related to the triple gene dosage. However, the general conclusion is a senescent phenotype; in particular, the most features of physiological aging, such as skin and hair changes, vision and hearing impairments, thyroid dysfunction, Alzheimer-like dementia, congenital heart defects, gastrointestinal malformations, immune system changes, appear in DS earlier than in normal age-matched subjects. The only established risk factor for the DS is advanced maternal age, responsible for changes in the meiosis of oocytes, in particular the meiotic nondisjunction of chromosome 21. In this process mitochondria play an important role since mitochondrial dysfunction, due to a variety of extrinsic and intrinsic influences, can profoundly influence the level of ATP generation in oocytes, required for a correct chromosomal segregation. Aim. The aim of this study is to investigate an integrated set of molecular genetic parameters (sequencing of complete mtDNA, heteroplasmy of the mtDNA control region, genotypes of APOE gene) in order to identify a possible association with the early neurocognitive decline observed in DS. Results. MtDNA point mutations do not accumulate with age in our study sample and do not correlate with early neurocognitive decline of DS subjects. It seems that D-loop heteroplasmy is largely not inherited and tends to accumulate somatically. Furthermore, in our study sample no association of cognitive impairment and ApoE genotype is found. Conclusions. Overall, our data cast some doubts on the involvement of these mutations in the decline of cognitive functions observed in DS.
Resumo:
Over the past few years, the switch towards renewable sources for energy production is considered as necessary for the future sustainability of the world environment. Hydrogen is one of the most promising energy vectors for the stocking of low density renewable sources such as wind, biomasses and sun. The production of hydrogen by the steam-iron process could be one of the most versatile approaches useful for the employment of different reducing bio-based fuels. The steam iron process is a two-step chemical looping reaction based (i) on the reduction of an iron-based oxide with an organic compound followed by (ii) a reoxidation of the reduced solid material by water, which lead to the production of hydrogen. The overall reaction is the water oxidation of the organic fuel (gasification or reforming processes) but the inherent separation of the two semireactions allows the production of carbon-free hydrogen. In this thesis, steam-iron cycle with methanol is proposed and three different oxides with the generic formula AFe2O4 (A=Co,Ni,Fe) are compared in order to understand how the chemical properties and the structural differences can affect the productivity of the overall process. The modifications occurred in used samples are deeply investigated by the analysis of used materials. A specific study on CoFe2O4-based process using both classical and in-situ/ex-situ analysis is reported employing many characterization techniques such as FTIR spectroscopy, TEM, XRD, XPS, BET, TPR and Mössbauer spectroscopy.
Resumo:
Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.