858 resultados para Ferromagnetism, Titanate, Anatase, Nanorods, Lithium Intercalation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bi4Ti4O15 [BBT], a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of BaTiO3 [BT] and Bi4Ti3O12 [BIT] obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. BBT ceramics were sintered at 1100C for 4 h without pre-calcination step within heating rate 10C/min. The formation of phase and crystal structure of BT, BIT and BBT were approved using X-ray analysis. The morphology of obtained powders and microstructure were exhamined using scanning electron microscopy. The electrical properties of sintered samples were carried out.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the dielectric properties of pure and lanthanum modified bismuth titanate thin films obtained by the polymeric precursor method. X-ray diffraction of the film annealed at 300 degrees C for 2h indicates a disordered structure. Lanthanum addition increases gradually the dielectric permittivity of films, keeping unchanged their loss tangent. From C-V curve we can see no hysteresis behavior indicating the absence of domain structure. The decrease in the conductivity for the heavily doped Bi4Ti3O12 (BIT) must be associated to the unidentified crystal defects. For comparison, dielectric properties of crystalline BIT film were also investigated. (C) 2007 Published by Elsevier B.V.
Resumo:
Synthesis and crystallographic data are reported for low and high temperature forms of LiLa(CrO4)2. The compounds are closely related to lamellar rare earth phosphates and arsenates of sodium and to RbLu(CrO4)2. Lattice parameters of the orthorhombic (low temperature) and monoclinic (high temperature) forms are given. The low temperature form is moisture sensitive and Li+ ions are easily displaced by protons. Thermal decomposition takes place at 250 °C and results in the formation of LiCrO2, LaCrO4, LaCrO3 and Cr2O3. © 1993.
Resumo:
The dispersion relations along the principal symmetry directions in BCC lithium-sodium alloys are calculated using second-order perturbation theory. The local modified Hoshino-Youngmodel potential was used for the lithium and the local Harrison model potential for sodium. The phonon density of states, the root mean square displacements and (Θ-T) curves are also calculated. In the absence of experimental data, just the theoretical predictions are presented here.
Resumo:
Lanthanum-lithium-sodium double chromates Li1-xNaxLa(CrO4)2 were prepared and analysed by means of admittance spectroscopy. Their a.c. conductivity parameters are correlated with structural details of high and low temperature forms of pure lanthanum-lithium double chromates. Lithium compounds show the lowest conductivity values and the highest activation energy for ion motion, while the sample Li0.5Na0.5La(CrO4)2 exhibits the highest conductivity 10-5 S cm-1 and the lowest activation energy 0.58 eV.
Resumo:
We investigate ortho-positronium-lithium-atom (Ps-Li) scattering using static-exchange and three-Ps-state coupled-channel calculations. The present three-PS-state scheme, while closely agreeing with the resonance and binding energies in the Ps-H system, predicts S-, P-, and D-wave resonances at 4.25 eV, 4.9 eV, and, 5.25 eV. respectively, in the electronic spin-singlet channel of Ps-Li scattering. The present calculation also yields a Ps-Li binding in this attractive singlet channel with an approximate binding energy of 0.218 eV, which is in adherence with the recent findings of a chemically stable PsLi system using stocastic variational and quantum Monte Carlo calculations. We further report elastic, Ps(2s)-, and Ps(2p)-excitation cross sections at low to medium energies (0.068-30 eV).
Resumo:
The phase evolution of lead titanate processed by the polymeric precursor method was investigated by thermal analysis, X-ray diffraction, and high-resolution transmission electron microscopy. The results showed that the cubic perovskite PbTiO3 (PT) phase is formed from an inorganic amorphous precursor at a temperature of 444 °C. A gradual transition from cubic to tetragonal perovskite PT was observed with the increase of calcination time at this temperature. HRTEM results showed that the cubic PT particles have a size of around 5 nm. The identification of cubic PT as an intermediate phase supports the hypothesis that the chemical homogeneity was kept at the molecular level during the synthesis process, with no cation segregation.
Resumo:
Piezoelectric composite, made from ferroelectric ceramic lead zirconate titanate (PZT) and vegetable based polyurethane (PU) polymer, was doped with a semiconductor filler, graphite. The resulting composite (PZT/C/PU) with 49/1/50- vol. % composition could be poled at lower field and shorter time due to the increased conductivity of the polymer phase following the introduction of graphite. The PZT/C/PU composite showed higher pyroelectric coefficient in comparison with the undoped PZT/PU composite with 50/50-vol. % composition. Also, the PZT/C/PU composite has shown the ability to detect both extensional and flexural modes of simulated acoustic emission (AE) at a distance up to 8.0 m from the source, thus indicating that it may be used for detection of structural damages.
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.
Resumo:
Barium titanate thick films were prepared from mechanically activated powders based on BaCO 3 and TiO 2. The thick films were screen-printed on alumina substrates electroded with Ag/Pd. The BT films were sintered at 850°C for 1 hour. The thickness was 30-75 μm depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate was investigated by SEM. The dielectric properties were measured and the results were reported.