907 resultados para Feely, Jay
Resumo:
Background Previous studies (mostly questionnaire-based in children) suggest that outdoor activity is protective against myopia. There are few studies on young adults investigating both the impact of simply being outdoors versus performing physical activity. The aim was to study the relationship between the refractive error of young adults and their physical activity patterns. Methods Twenty-seven university students, aged 18 to 25 years, wore a pedometer (Omron HJ720ITE) for seven days both during the semester and holiday periods. They simultaneously recorded the type of activity performed, its duration, the number of steps taken (from the pedometer) and their location (indoors/outdoors) in a logbook. Mean spherical refractive error was used to divide participants into three groups (emmetropes: +1.00 to -0.50 D, low myopes: -0.62 to -3.00 D, higher myopes: -3.12 D or greater myopia). Results There were no significant differences between the refractive groups during the semester or holiday periods; the average daily times spent outdoors, the duration of physical activity, the ratio of physical activity performed outdoors to indoors and amount of near work performed were similar. The peak exercise intensity was similar across all groups: approximately 100 steps perminute, a brisk walk. Up to one-third of all physical activity was performed outdoors. There were some significant differences in activities performed during semester and holiday times. For example, lowmyopes spent significantly less time outside (49 ± 47 versus 74 ± 41 minutes, p = 0.005) and performed less physical activity (6,388 ± 1,747 versus 6,779 ± 2,746 steps per day; p = 0.03) during the holidays compared to during semester. Conclusions The fact that all groups had similar low exercise intensity butmany were notmyopic suggests that physical activity levels are not critical. There were differences in the activity patterns of lowmyopes during semester and holiday periods. This study highlights the need for a larger longitudinal-based study with particular emphasis on how discretionary time is spent.
Resumo:
The Catherwood Library, which serves Cornell's School of Industrial and Labor Relations, houses a complete set of the studies either published by or produced under the auspices of the Work in America Institute, Inc. These volumes were donated to the Catherwood Library by the Institute's Board of Directors through the initiative of Jay W. Waks, ILR '68, who succeeded Mr. Rosow as Chair of the Institute and who, for many years, sat on the Institute's Executive Committee with Mr. Rosow and Thomas R. Donahue, former Secretary-Treasurer and Interim President of the AFL-CIO. Each volume bears a bookplate with this message: "This volume was donated by the Work in America Institute, Inc. in honor of its founder, Jerome M. Rosow, 1919-2002." For additional information or to check on the availability of a document, please contact the Reference Department at 607-255-2277 or email us at ilrref@cornell.edu.
Resumo:
This collection holds papers of members of the Loewenstein family, especially Walter and Karl Loewenstein. Among the papers here are examples of Walter Loewenstein's writing, documentation of life in Rietberg in Westphalia (Germany) during the late 1930s and early 1940s, and correspondence concerning the fate of several family members during this time. Papers relating to Karl Loewenstein focus on his wartime activities. The genealogy of the Brandenstein family is also represented here along with a few papers of other family members. The collection consists of unpublished manuscripts, correspondence, photographs, official and restitution documentation, notebooks and notes, genealogical research, and fliers.
Resumo:
Purpose Energy is a resource of strategic importance for high density cities. International trade reshapes the urban economy and industrial structure of a city, which will indirectly affect energy use. As an international trade hub, Hong Kong relies on the import and export of services. Energy performance in the international trading of these services needs to be properly understood and assessed for Hong Kong’s urban renewal efforts. Design/methodology/approach This study evaluates Hong Kong’s embodied energy in service trades based on an input-output analysis. The three criteria used for assessment include trading areas, industry sector, and trade balance. Findings Analyzed by region, results show that Mainland China and the USA are the two largest sources of embodied energy in imports of services, while Mainland China and Japan are the two largest destinations of exports. In terms of net embodied energy transfer, Hong Kong mainly receives net energy import from Mainland China and the USA and supplies net energy export to Japan, the UK and Taiwan. Among industry sectors, Manufacturing services, Transport and Travel contribute most significantly to the embodied energy in Hong Kong’s imported services, while Transport and Travel contribute most to the energy embodied in exported services. Originality/value This study identifies the characteristics of energy consumption of service trading and establishes a feasible approach to analyze energy performance of service trade in energy-deficient Hong Kong for the first time. It provides necessary understanding and foundation for developing energy strategies in a service-based, high density urban economy.
Resumo:
The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: "very good" (VG), "moderately good" (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1 and ± 2, W hydrogen bonds beyond ± 2 (where is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.
Resumo:
Public rental housing (PRH) projects are the mainstream of China's new affordable housing policies, and their integrated sustainability has a far-reaching effect on medium-low income families' well-being and social stability. However, there are few quantitative researches on the integrated sustainability of PRH projects. Our study tries to fill this gap through proposing an assessment model of the integrated sustainability for PRH projects. First, this paper defines what the sustainability of a PRH project is. Second, after constructing the sustainable system of a PRH project from the perspective of complex eco-system, the paper explores the internal operation mechanism and the coupling mechanism among the ecological, economic and social subsystems. Third, it identifies fourteen indices to represent the sustainability system of a PRH project, including six indices of ecological subsystem, five of economic subsystem and three of social subsystem. Fourth, it qualifies the weights of three subsystems and their internal representative indices. In addition, an assessment model is established through expert surveys and analytic network process (ANP). Finally, the paper carries out an empirical research on a PRH project in Nanjing city of China, followed by suggestions to enhance the integrated sustainability. The sustainability system and its evaluation model proposed in this paper are concise and easy to understand and can provide a theoretical foundation and a scientific basis for the evaluation and optimization of PRH projects.
Resumo:
Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.
Resumo:
Purpose: Knowledge management (KM) is important to the knowledge-intensive construction industry. The diversified and changing nature of works in this field warrants us to stocktake, identify changes and map out KM research framework for future exploration. Design/methodology/approach: The study involves three aspects. First, three stages of KM research in construction were distinguished in terms of the time distribution of 217 target publications. Major topics in the stages were extracted for understanding the changes of research emphasis from evolutionary perspective. Second, the past works were summed up in a three-dimensional research framework in terms of management organization, managerial methodology and approach, and managerial objective. Finally, potential research orientations in the future were predicted to expand the existing research framework. Findings: It was found that (1) KM research has significantly blossomed in the last two decades with a great potential; (2) major topics of KM were changing in terms of technology, technique, organization, attribute of knowledge and research objectives; (3) past KM studies centred around management organization, managerial methodology and approach, and managerial objective thus a three-dimensional research framework was proposed; (4) within the research framework, team-level, project-level and firm-level KM were studied to achieve project, organizational and competitive objectives by integrated methodologies of information technology, social technique and KM process tool; and (5) nine potential research orientations were predicted corresponding to the three dimensions. Finally, an expanded research framework was proposed to encourage and guide future research works in this field. Research limitations/implications: The paper only focused on the construction industry. The findings need further exploration in order to discover any possible missing important research works which were not published in English or not included in the time period. Originality/value: The paper formed a systematic framework of KM research in construction and predicted the potential research orientations. It provides much value for the researchers who want to understand the past and the future of global KM research in the construction industry.
Resumo:
Our evaluation studies of Indigenous school reform begin from a different starting point: listening to, hearing and engaging with the commentaries, voices, narratives and analyses of Indigenous community as they discuss and recount their experiences and current encounters with Australian state schools. Here we undertake a contrastive documentation of the views of Indigenous community members, Elders, parents, education workers, and young people and, indeed, of the views of their non-Indigenous teachers and school principals. This is a dramatic picture of two distinctive cultural lifeworlds, communities and worldviews in contact, of two very different ‘constructions’ by participants of a shared, mutual experience: everyday interaction in the social field of the Australian school. Taken together, our Indigenous and non-Indigenous participants repeatedly confirmed and corroborated a key theme: that Indigenous peoples continue to be viewed and ‘treated’ through the lens and language of cultural, intellectual and moral ‘deficit’.
Resumo:
The increasing use of 3D modeling of Human Face in Face Recognition systems, User Interfaces, Graphics, Gaming and the like has made it an area of active study. Majority of the 3D sensors rely on color coded light projection for 3D estimation. Such systems fail to generate any response in regions covered by Facial Hair (like beard, mustache), and hence generate holes in the model which have to be filled manually later on. We propose the use of wavelet transform based analysis to extract the 3D model of Human Faces from a sinusoidal white light fringe projected image. Our method requires only a single image as input. The method is robust to texture variations on the face due to space-frequency localization property of the wavelet transform. It can generate models to pixel level refinement as the phase is estimated for each pixel by a continuous wavelet transform. In cases of sparse Facial Hair, the shape distortions due to hairs can be filtered out, yielding an estimate for the underlying face. We use a low-pass filtering approach to estimate the face texture from the same image. We demonstrate the method on several Human Faces both with and without Facial Hairs. Unseen views of the face are generated by texture mapping on different rotations of the obtained 3D structure. To the best of our knowledge, this is the first attempt to estimate 3D for Human Faces in presence of Facial hair structures like beard and mustache without generating holes in those areas.
Resumo:
Modeling the performance behavior of parallel applications to predict the execution times of the applications for larger problem sizes and number of processors has been an active area of research for several years. The existing curve fitting strategies for performance modeling utilize data from experiments that are conducted under uniform loading conditions. Hence the accuracy of these models degrade when the load conditions on the machines and network change. In this paper, we analyze a curve fitting model that attempts to predict execution times for any load conditions that may exist on the systems during application execution. Based on the experiments conducted with the model for a parallel eigenvalue problem, we propose a multi-dimensional curve-fitting model based on rational polynomials for performance predictions of parallel applications in non-dedicated environments. We used the rational polynomial based model to predict execution times for 2 other parallel applications on systems with large load dynamics. In all the cases, the model gave good predictions of execution times with average percentage prediction errors of less than 20%
Resumo:
In this paper, a numerical investigation is performed to study the mixed convective flow and heat transfer characteristics past a square cylinder in cross flow at incidence. Utilizing air (Pr = 0.71) as an operating fluid, computations are carried out at a representative Reynolds number (Re) of 100. Angles of incidences are varied as, 0 degrees <= alpha <= 45 degrees. Effect of superimposed positive and negative cross-flow buoyancy is brought about by varying the Richardson number (RI) in the range -1.0 <= Ri <= 1.0. The detail features of flow topology and heat transport are analyzed critically for different angles of incidences. The thermo fluidic forces acting on the cylinder during mixed convection are captured in terms of the drag (C-D), lift (C-L), and moment (C-M) coefficients. The results show that the lateral width of the cylinder wake reduces with increasing alpha and the isotherms spread out far wide. In the range 0 degrees < alpha < 45 degrees, C-D reduces with increasing Ri. The functional dependence of C-M with Ri reveals a linear relationship. Thermal boundary layer thickness reduces with increasing angle of incidences. The global rate of heat transfer from the cylinder increases with increasing alpha. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Retransmission protocols such as HDLC and TCP are designed to ensure reliable communication over noisy channels (i.e., channels that can corrupt messages). Thakkar et al. 15] have recently presented an algorithmic verification technique for deterministic streaming string transducer (DSST) models of such protocols. The verification problem is posed as equivalence checking between the specification and protocol DSSTs. In this paper, we argue that more general models need to be obtained using non-deterministic streaming string transducers (NSSTs). However, equivalence checking is undecidable for NSSTs. We present two classes where the models belong to a sub-class of NSSTs for which it is decidable. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.
Resumo:
Clock synchronization is highly desirable in distributed systems, including many applications in the Internet of Things and Humans. It improves the efficiency, modularity, and scalability of the system, and optimizes use of event triggers. For IoTH, BLE - a subset of the recent Bluetooth v4.0 stack - provides a low-power and loosely coupled mechanism for sensor data collection with ubiquitous units (e.g., smartphones and tablets) carried by humans. This fundamental design paradigm of BLE is enabled by a range of broadcast advertising modes. While its operational benefits are numerous, the lack of a common time reference in the broadcast mode of BLE has been a fundamental limitation. This article presents and describes CheepSync, a time synchronization service for BLE advertisers, especially tailored for applications requiring high time precision on resource constrained BLE platforms. Designed on top of the existing Bluetooth v4.0 standard, the CheepSync framework utilizes low-level time-stamping and comprehensive error compensation mechanisms for overcoming uncertainties in message transmission, clock drift, and other system-specific constraints. CheepSync was implemented on custom designed nRF24Cheep beacon platforms (as broadcasters) and commercial off-the-shelf Android ported smartphones (as passive listeners). We demonstrate the efficacy of CheepSync by numerous empirical evaluations in a variety of experimental setups, and show that its average (single-hop) time synchronization accuracy is in the 10 mu s range.