751 resultados para Fatty degeneration.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. METHODS: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARgammaL2/L2 mice) was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor gamma in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the following groups: (i) mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii) mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii) control mice fed cHF diet with 15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. RESULTS: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. CONCLUSION: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in agreement with the involvement of fat cell turnover in control of adiposity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores the potential use of stable carbon isotope ratios (delta C-13) of single fatty acids (FA) as tracers for the transformation of FA from diet to milk, with focus on the metabolic origin of c9,t11-18:2. For this purpose, dairy cows were fed diets based exclusively on C-3 and C-4 plants. The FA in milk and feed were fractionated by silver-ion thin-layer chromatography and analyzed for their delta C-13 values. Mean delta C-13 values of FA from C-3 milk were lower compared to those from C-4 milk (-30.1aEuro degrees vs. -24.9aEuro degrees, respectively). In both groups the most negative delta C-13 values of all FA analyzed were measured for c9,t11-18:2 (C-3 milk = -37.0 +/- A 2.7aEuro degrees; C-4 milk -31.4 +/- A 1.4aEuro degrees). Compared to the dietary precursors 18:2n-6 and 18:3n-3, no significant C-13-depletion was measured in t11-18:1. This suggests that the delta C-13-change in c9,t11-18:2 did not originate from the microbial biohydrogenation in the rumen, but most probably from endogenous desaturation of t11-18:1. It appears that the natural delta C-13 differences in some dietary FA are at least partly preserved in milk FA. Therefore, carbon isotope analyses of individual FA could be useful for studying metabolic transformation processes in ruminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In Rd1 mice, a PDE6ß mutation is responsible for the rapid loss of photoreceptors. We observed re-expression of cell cycle proteins during early stages of retinal degeneration and the deletion of Bmi1 markedly delayed photoreceptor death in Rd1;Bmi1-/- mice. The present study characterizes the link between the expression of CDKs and the apoptotic process in Rd1 photoreceptors.Methods: CDK expression levels were evaluated by immunostaining of wild-type, Rd1 and Rd1;Bmi1-/- eye sections. The role of CDKs in retinal degeneration is currently being investigated by treating Rd1 retinal explants with CDK inhibitors, and by injecting roscovitine-containing micelles into the vitreous of P10 Rd1 mice.Results: We show that some Rd1 photoreceptors express CDK4 already at P9, and that the number of CDK4-positive cells increases more than 6-fold by P11. CDK2 and CDK6 are also expressed in the mutant outer nuclear layer (ONL), however to a lesser extent than CDK4. Concomitant with the expression of CDKs, the apoptotic process in Rd1 photoreceptors is detected by TUNEL staining. Co-localization analyses suggest that CDK expression precedes photoreceptor cell death since TUNEL-single-positive cells are rarely detected at P9, and double-positive as well as TUNEL- or CDK4-single-positive cells are all present in P11 Rd1 retinas. The wild-type ONL does not contain any TUNEL- or CDK4-positive cells. Interestingly, Bmi1 deletion downregulates CDK4 expression in P12 Rd1;Bmi1-/- retinas, and influences the accumulation of cGMP in Rd1 retinas. More cGMP is detected in the P11 Rd1;Bmi1-/- ONL than in the Rd1 ONL, while it is strongly reduced at P15. To better characterize the link between CDK expression and retinal degeneration, current experiments include the analysis of CDK inhibition in Rd1 retinal explants and in mouse eyes injected with roscovitine-containing micelles.Conclusions: The time-course of cell cycle protein expression may be related to early events of the apoptotic process in Rd1 photoreceptors. Moreover, the loss of Bmi1 seems to interfere with the first stages of retinal degeneration and to influence the expression of CDK4. Further experiments will determine whether the deletion of Bmi1 prevents cell death through a direct CDK inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In normal retinas, amyloid-β (Aβ) accumulates in the subretinal space, at the interface of the retinal pigment epithelium, and the photoreceptor outer segments. However, the molecular and cellular effects of subretinal Aβ remain inadequately elucidated. We previously showed that subretinal injection of Aβ(1-42) induces retinal inflammation, followed by photoreceptor cell death. The retinal Müller glial (RMG) cells, which are the principal retinal glial cells, are metabolically coupled to photoreceptors. Their role in the maintenance of retinal water/potassium and glutamate homeostasis makes them important players in photoreceptor survival. This study investigated the effects of subretinal Aβ(1-42) on RMG cells and of Aβ(1-42)-induced inflammation on retinal homeostasis. RMG cell gliosis (upregulation of GFAP, vimentin, and nestin) on day 1 postinjection and a proinflammatory phenotype were the first signs of retinal alteration induced by Aβ(1-42). On day 3, we detected modifications in the protein expression patterns of cyclooxygenase 2 (COX-2), glutamine synthetase (GS), Kir4.1 [the inwardly rectifying potassium (Kir) channel], and aquaporin (AQP)-4 water channels in RMG cells and of the photoreceptor-associated AQP-1. The integrity of the blood-retina barrier was compromised and retinal edema developed. Aβ(1-42) induced endoplasmic reticulum stress associated with sustained upregulation of the proapoptotic factors of the unfolded protein response and persistent photoreceptor apoptosis. Indomethacin treatment decreased inflammation and reversed the Aβ(1-42)-induced gliosis and modifications in the expression patterns of COX-2, Kir4.1, and AQP-1, but not of AQP-4 or GS. Nor did it improve edema. Our study pinpoints the adaptive response to Aβ of specific RMG cell functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of diet on Longissimus muscle fatty acid composition was determined using 24 crossbred heifers of Simmental vs. Nelore and Limousin vs. Nelore. The experimental diets were: 1) corn and yeast (CY); 2) corn, cottonseed meal + meat and bones meal (CMB); 3) cassava hull and yeast (CHY); 4) cassava hull, cottonseed meal + meat and bones meal (CHMB). Feeding CHMB diets resulted in lower lipid and higher cholesterol contents (P<0.05) for both crosses. Most of the identified fatty acids were monounsaturated, and the highest percentage was found to oleic acid (C18:1w9), with values ranging from 32.54 to 46.42%. Among the saturated fatty acids the palmitic acid (C16:0) showed the highest percentage, with its contents ranging between 19.40 and 32.44%. The highest polyunsaturated/saturated fatty acid ratio was of 0.30, and the lowest was of 0.08. Feeding CY diets resulted in lower cholesterol and higher polyunsaturated fatty acid contents of the Longissimus muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: An increased mRNA expression of the genes coding for the extracellular matrix proteins neuroglycan C (NGC), interphotoreceptor matrix proteoglycan 2 (IMPG2), and CD44 antigen (CD44) has been observed during retinal degeneration in mice with a targeted disruption of the Rpe65 gene (Rpe65-/- mouse). To validate these data, we analyzed this differential expression in more detail by characterizing retinal NGC mRNA isoform and protein expression during disease progression. METHODS: Retinas from C57/Bl6 wild-type and Rpe65-/- mice, ranging 2 to 18 months of age, were used. NGC, IMPG2, and CD44 mRNA expression was assessed by oligonucleotide microarray, quantitative PCR, and in situ hybridization. Retinal NGC protein expression was analyzed by western blot and immunohistochemistry. RESULTS: As measured by quantitative PCR, mRNA expression of NGC and CD44 was induced by about 2 fold to 3 fold at all time points in Rpe65-/- retinas, whereas initially 4 fold elevated IMPG2 mRNA levels progressively declined. NGC and IMPG2 mRNAs were expressed in the ganglion cell layer, the inner nuclear layer, and at the outer limiting membrane. NGC mRNA was also detected in retinal pigment epithelium cells (RPE), where its mRNA expression was not induced during retinal degeneration. NGC-I was the major isoform detected in the retina and the RPE, whereas NGC-III was barely detected and NGC-II could not be assessed. NGC protein expression was at its highest levels on the apical membrane of the RPE. NGC protein levels were induced in retinas from 2- and 4-month-old Rpe65-/- mice, and an increased amount of the activity-cleaved NGC ectodomain containing an epidermal growth factor (EGF)-like domain was detected. CONCLUSIONS: During retinal degeneration in Rpe65-/- mice, NGC expression is induced in the neural retina, but not in the RPE, where NGC is expressed at highest levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of fatty acids in plants occurs primarily in the peroxisomes through the beta-oxidation cycle. Enzymes that are involved in various aspects of beta-oxidation have been identified recently and shown to act biochemically on a diversity of fatty acids and derivatives. Analysis of several mutants has revealed essential roles for beta-oxidation in the breakdown of reserve triacylglycerols, seed development, seed germination and post-germinative growth before the establishment of photosynthesis. Beta-oxidation has also a considerable importance during the vegetative and reproductive growth phases, and plays a role in plant responses to stress, particularly in the synthesis of jasmonic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapeseed (Brassica napus) oils differing in cultivar, sites of growth, and harvest year were characterized by fatty acid concentrations and carbon, hydrogen, and oxygen stable isotope analyses of bulk oils (delta(13)C(bulk), delta(2)H(bulk), delta(18)O(bulk) values) and individual fatty acids (delta(13)C(FA)). The delta(13)C(bulk), delta(2)H(bulk), and delta(18)O(bulk) values were determined by continuous flow combustion and high-temperature conversion elemental analyzer isotope ratio mass spectrometry (EA/IRMS, TC-EA/IRMS). The delta(13)C(FA) values were determined using gas chromatography-combustion isotope ratio mass spectrometry (GC/C/IRMS). For comparison, other C(3) vegetable oils rich in linolenic acid (flax and false flax oils) and rich in linoleic acid (poppy, sunflower, and safflower oils) were submitted to the same chemical and isotopic analyses. The bulk and molecular delta(13)C values were typical for C(3) plants. The delta(13)C value of palmitic acid (delta(13)C(16:0)) and n-3 alpha-linolenic acid (delta(13)C(18:3n-3)) differed (p < 0.001) between rape, flax, and poppy oils. Also within species, significant differences of delta(13)C(FA) were observed (p < 0.01). The hydrogen and oxygen isotope compositions of rape oil differed between cultivars (p < 0.05). Major differences in the individual delta(13)C(FA) values were found. A plant-specific carbon isotope fractionation occurs during the biosynthesis of the fatty acids and particularly during desaturation of C(18) acids in rape and flax. Bulk oil and specific fatty acid stable isotope analysis might be useful in tracing dietary lipids differing in their origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. These receptors stimulate transcription after activation by their cognate ligand and binding to the promoter of target genes. In this review, we discuss how fatty acids affect PPAR functions in the cell. We first describe the structural features of the ligand binding domains of PPARs, as defined by crystallographic analyses. We then present the ligand-binding characteristics of each of the three PPARs (alpha, beta/delta, gamma) and relate ligand activation to various cellular processes: (i) fatty acid catabolism and modulation of the inflammatory response for PPARalpha, (ii) embryo implantation, cell proliferation and apoptosis for PPARbeta, and (iii) adipocytic differentiation, monocytic differentiation and cell cycle withdrawal for PPARgamma. Finally, we present possible cross-talk between the PPAR pathway and different endocrine routes within the cell, including the thyroid hormone and retinoid pathways.