993 resultados para Factorial analysis
Resumo:
Se investiga la distribución espacial de contenidos metálicos analizados sobre testigos de sondeos obtenidos en las campañas de exploración de la Veta Pallancata. Se aplica el análisis factorial a dicha distribución y a los cocientes de los valores metálicos, discriminando los que están correlacionados con la mineralización argentífera y que sirven como guías de exploración para hallar zonas de potenciales reservas por sus gradientes de variación.Abstract:The metal distribution in a vein may show the paths of hydrothermal fluid flow at the time of mineralization. Such information may assist for in-fill drilling. The Pallancata Vein has been intersected by 52 drill holes, whose cores were sampled and analysed, and the results plotted to examine the mineralisation trends. The spatial distribution of the ore is observed from the logAg/logPb ratio distribution. Au is in this case closely related to Ag (electrum and uytenbogaardtite, Ag3AuS2 ). The Au grade shows the same spatial distribution as the Ag grade. The logAg/logPb ratio distribution also suggests possible ore to be expected at deeper locations. Shallow supergene Ag enrichment was also observed.
Resumo:
Ethnopharmacological relevance and background: “Dictamnus” was a popular name for a group of medicinal herbaceous plant species of the Rutaceae and Lamiaceae, which since the 4th century have been used for gynaecological problems and other illnesses BCE and still appear in numerous ethnobotanical records. Aims: This research has as four overarching aims: Determining the historical evolution of medical preparations labelled “Dictamnus” and the different factors affecting this long-standing herbal tradition. Deciphering and differentiating those medicinal uses of “Dictamnus” which strictly correspond to Dictamnus (Rutaceae), from those of Origanum dictamnus and other Lamiaceae species. Quantitatively assessing the dependence from herbal books, and pharmaceutical tradition, of modern Dictamnus ethnobotanical records. Determining whether differences between Western and Eastern Europe exist with regards to the Dictamnus albus uses in ethnopharmacology and ethnomedicine. Methods: An exhaustive review of herbals, classical pharmacopoeias, ethnobotanical and ethnopharmacological literature was conducted. Systematic analysis of uses reported which were standardized according to International Classification of Diseases – 10 and multivariate analysis using factorial, hierarchical and neighbour joining methods was undertaken. Results and discussion: The popular concept “Dictamnus” includes Origanum dictamnus L., Ballota pseudodictamnus (L.) Benth. and B. acetabulosa (L.) Benth. (Lamiaceae), as well as Dictamnus albus L. and D. hispanicus Webb ex Willk. (Rutaceae), with 86 different types of uses. Between 1000 and 1700 CE numerous complex preparations with “Dictamnus” were used in the treatment of 35 different pathologies. On biogeographical grounds the widespread D. albus is a far more likely prototypical “Dictamnus” than the Cretan endemic Origanum dictamnus. However both form integral parts of the “Dictamnus” complex. Evidence exists for a sufficiently long and coherent tradition for D. albus and D. hispanicus, use to treat 47 different categories of diseases. Conclusions: This approach is a model for understanding the cultural history of plants and their role as resources for health care. “Dictamnus” shows how transmission of traditional knowledge about materia medica, over 26 centuries, represents remarkable levels of development and innovation. All this lead us to call attention to D. albus and D. hispanicus which are highly promising as potential herbal drug leads. The next steps of research should be to systematically analyse phytochemical, pharmacological and clinical evidence and to develop safety, pharmacology and toxicology profiles of the traditional preparations.
Resumo:
Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered. © 2002 The College of Optometrists.
Resumo:
Experiments combining different groups or factors are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than simply the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, in a factorial experiment, it is important to define the design of the experiment in detail because this determines the appropriate type of ANOVA. We will discuss some of the common variations of factorial ANOVA in future statnotes. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.
Resumo:
In some experimental situations, the factors may not be equivalent to each other and replicates cannot be assigned at random to all treatment combinations. A common case, called a ‘split-plot design’, arises when one factor can be considered to be a major factor and the other a minor factor. Investigators need to be able to distinguish a split-plot design from a fully randomized design as it is a common mistake for researchers to analyse a split-plot design as if it were a fully randomised factorial experiment.
Resumo:
Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the sample size required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for the error term of the ANOVA testing effects of particular interest. Finally, it is important to always consider the design of the experiment because this determines the appropriate ANOVA to use. Hence, it is necessary to be able to identify the different forms of ANOVA appropriate to different experimental designs and to recognise when a design is a split-plot or incorporates a repeated measure. If there is any doubt about which ANOVA to use in a specific circumstance, the researcher should seek advice from a statistician with experience of research in applied microbiology.
Resumo:
Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the DF of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, it is important to consider the design of the experiment because this determines the appropriate ANOVA to use. Some of the most common experimental designs used in the biosciences and their relevant ANOVAs are discussed by. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.
Resumo:
The key to the correct application of ANOVA is careful experimental design and matching the correct analysis to that design. The following points should therefore, be considered before designing any experiment: 1. In a single factor design, ensure that the factor is identified as a 'fixed' or 'random effect' factor. 2. In more complex designs, with more than one factor, there may be a mixture of fixed and random effect factors present, so ensure that each factor is clearly identified. 3. Where replicates can be grouped or blocked, the advantages of a randomised blocks design should be considered. There should be evidence, however, that blocking can sufficiently reduce the error variation to counter the loss of DF compared with a randomised design. 4. Where different treatments are applied sequentially to a patient, the advantages of a three-way design in which the different orders of the treatments are included as an 'effect' should be considered. 5. Combining different factors to make a more efficient experiment and to measure possible factor interactions should always be considered. 6. The effect of 'internal replication' should be taken into account in a factorial design in deciding the number of replications to be used. Where possible, each error term of the ANOVA should have at least 15 DF. 7. Consider carefully whether a particular factorial design can be considered to be a split-plot or a repeated measures design. If such a design is appropriate, consider how to continue the analysis bearing in mind the problem of using post hoc tests in this situation.
Resumo:
2000 Mathematics Subject Classification: 62J12, 62K15, 91B42, 62H99.
Resumo:
In an effort to improve instruction and better accommodate the needs of students, community colleges are offering courses delivered in a variety of delivery formats that require students to have some level of technology fluency to be successful in the course. This study was conducted to investigate the relationship between student socioeconomic status (SES), course delivery method, and course type on enrollment, final course grades, course completion status, and course passing status at a state college. ^ A dataset for 20,456 students of low and not low SES enrolled in science, technology, engineering, and mathematics (STEM) course types delivered using traditional, online, blended, and web enhanced course delivery formats at Miami Dade College, a large open access 4-year state college located in Miami-Dade County, Florida, was analyzed. A factorial ANOVA using course type, course delivery method, and student SES found no significant differences in final course grades when used to determine if course delivery methods were equally effective for students of low and not low SES taking STEM course types. Additionally, three chi-square goodness-of-fit tests were used to investigate for differences in enrollment, course completion and course passing status by SES, course type, and course delivery method. The findings of the chi-square tests indicated that: (a) there were significant differences in enrollment by SES and course delivery methods for the Engineering/Technology, Math, and overall course types but not for the Natural Science course type and (b) there were no significant differences in course completion status and course passing status by SES and course types overall and SES and course delivery methods overall. However, there were statistically significant but weak relationships between course passing status, SES and the math course type as well as between course passing status, SES, and online and traditional course delivery methods. ^ The mixed findings in the study indicate that strides have been made in closing the theoretical gap in education and technology skills that may exist for students of different SES levels. MDC's course delivery and student support models may assist other institutions address student success in courses that necessitate students having some level of technology fluency. ^
Resumo:
The assessment of adolescent drinking behavior is a complex task, complicated by variability in drinking patterns, the transitory and developmental nature of the behavior and the reliance (for large scale studies) on self-report questionnaires. The Adolescent Alcohol Involvement Scale (Mayer & Filstead, 1979) is a 14-item screening tool designed to help to identify alcohol misusers or more problematic drinkers. The present study utilized a large sample (n = 4066) adolescents from Northern Ireland. Results of Confirmatory Factor Analyses and reliability estimates revealed that the 14-items share sufficient common variance that scores can be considered to be reliable and that the 14 items can be scored to provide a composite alcohol use score.
Resumo:
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
Resumo:
Tomato (Lycopersicon esculentum Mill.), apart from being a functional food rich in carotenoids, vitamins and minerals, is also an important source of phenolic compounds [1 ,2]. As antioxidants, these functional molecules play an important role in the prevention of human pathologies and have many applications in nutraceutical, pharmaceutical and cosmeceutical industries. Therefore, the recovery of added-value phenolic compounds from natural sources, such as tomato surplus or industrial by-products, is highly desirable. Herein, the microwave-assisted extraction of the main phenolic acids and flavonoids from tomato was optimized. A S-Ieve! full factorial Box-Behnken design was implemented and response surface methodology used for analysis. The extraction time (0-20 min), temperature (60-180 "C), ethanol percentage (0-100%), solidlliquid ratio (5-45 g/L) and microwave power (0-400 W) were studied as independent variables. The phenolic profile of the studied tomato variety was initially characterized by HPLC-DAD-ESIIMS [2]. Then, the effect of the different extraction conditions, as defined by the used experimental design, on the target compounds was monitored by HPLC-DAD, using their UV spectra and retention time for identification and a series of calibrations based on external standards for quantification. The proposed model was successfully implemented and statistically validated. The microwave power had no effect on the extraction process. Comparing with the optimal extraction conditions for flavonoids, which demanded a short processing time (2 min), a low temperature (60 "C) and solidlliquid ratio (5 g/L), and pure ethanol, phenolic acids required a longer processing time ( 4.38 min), a higher temperature (145.6 •c) and solidlliquid ratio (45 g/L), and water as extraction solvent. Additionally, the studied tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.
Resumo:
This paper characterizes humic substances (HS) extracted from soil samples collected in the Rio Negro basin in the state of Amazonas, Brazil, particularly investigating their reduction capabilities towards Hg(II) in order to elucidate potential mercury cycling/volatilization in this environment. For this reason, a multimethod approach was used, consisting of both instrumental methods (elemental analysis, EPR, solid-state NMR, FIA combined with cold-vapor AAS of Hg(0)) and statistical methods such as principal component analysis (PCA) and a central composite factorial planning method. The HS under study were divided into groups, complexing and reducing ones, owing to different distribution of their functionalities. The main functionalities (cor)related with reduction of Hg(II) were phenolic, carboxylic and amide groups, while the groups related with complexation of Hg(II) were ethers, hydroxyls, aldehydes and ketones. The HS extracted from floodable regions of the Rio Negro basin presented a greater capacity to retain (to complex, to adsorb physically and/or chemically) Hg(II), while nonfloodable regions showed a greater capacity to reduce Hg(II), indicating that HS extracted from different types of regions contribute in different ways to the biogeochemical mercury cycle in the basin of the mid-Rio Negro, AM, Brazil. (c) 2007 Published by Elsevier B.V.