262 resultados para FLIP-FLOP
Resumo:
Alcohol is one of the oldest and most widely used drugs on the planet, but the cellular mechanisms by which it affects neural function are still poorly understood. Unlike other drugs of abuse, alcohol has no specific receptor in the nervous system, but is believed to operate through GABAergic and serotonergic neurotransmitter systems. Invertebrate models offer circuits of reduced numerical complexity and involve the same cell types and neurotransmitter systems as vertebrate circuits. The well-understood neural circuits controlling crayfish escape behavior offer neurons that are modulated by GABAergic inhibition, thus making tail-flip circuitry an effective circuit model to study the cellular mechanisms of acute alcohol exposure. Crayfish are capable of two stereotyped, reflexive escape behaviors known as tail-flips that are controlled by two different pairs of giant interneurons, the lateral giants (LG) and the medial giants (MG). The LG circuit has been an established model in the neuroscience field for more than 60 years and is almost completely mapped out. In contrast, the MG is still poorly understood, but has important behavioral implications in social behavior and value-based decision making. In this dissertation, I show that both crayfish tail-flip circuitry are physiologically sensitive to relevant alcohol concentrations and that this sensitivity is observable on the single cell level. I also show that this ethyl alcohol (EtOH) sensitivity in the LG can be changed by altering the crayfish’s recent social experience and by removing descending inputs to the LG. While the MG exhibits similar physiological sensitivity, its inhibitory properties have never been studied before this research. Through the use of electrophysiological and pharmacological techniques, I show that the MG exhibits many similar inhibitory properties as the LG that appear to be the result of GABA-mediated chloride currents. Finally, I present evidence that the EtOH-induced changes in the MG are blocked through pre-treatment of the potent GABAA receptor agonist, muscimol, which underlines the role of GABA in EtOH’s effects on crayfish tail-flip circuitry. The work presented here opens the way for crayfish tail-flip circuitry to be used as an effective model for EtOH’s acute effects on aggression and value-based decision making.
Resumo:
International audience
Resumo:
201 p.
Resumo:
The future generation of modern illumination should not only be cheap and highly efficient, but also demonstrate high quality of light, light which allows better color differentiation and fidelity. Here we are presenting a novel approach to create a white solid-state light source providing ultimate color rendition necessary for a number of applications. The proposed semi-hybrid device combines a monolithic blue-cyan light emitting diode (MBC LED) with a green-red phosphor mixture. It has shown a superior color rendering index (CRI), 98.6, at correlated color temperature of around 3400 K. The MBC LED epi-structure did not suffer from the efficiency reduction typical for monolithic multi-color emitters and was implemented in the two most popular chip designs: “epi-up” and “flip-chip”. Redistribution of the blue and cyan band amplitudes in the white-light emission spectrum, using the operating current, is found to be an effective tool for fine tuning the color characteristics. (Figure presented.).
Resumo:
Mentre si svolgono operazioni su dei qubit, possono avvenire vari errori, modificando così l’informazione da essi contenuta. La Quantum Error Correction costruisce algoritmi che permettono di tollerare questi errori e proteggere l’informazione che si sta elaborando. Questa tesi si focalizza sui codici a 3 qubit, che possono correggere un errore di tipo bit-flip o un errore di tipo phase-flip. Più precisamente, all’interno di questi algoritmi, l’attenzione è posta sulla procedura di encoding, che punta a proteggere meglio dagli errori l’informazione contenuta da un qubit, e la syndrome measurement, che specifica su quale qubit è avvenuto un errore senza alterare lo stato del sistema. Inoltre, sfruttando la procedura della syndrome measurement, è stata stimata la probabilità di errore di tipo bit-flip e phase-flip su un qubit attraverso l’utilizzo della IBM quantum experience.
Resumo:
Electric cars are increasingly popular due to a transition of mobility towards more sustainable forms. From an increasingly green and pollution reduction perspective, there are more and more incentives that encourage customers to invest in electric cars. Using the Industrial Design and Structure (IDeS) research method, this project has the aim to design a new electric compact SUV suitable for all people who live in the city, and for people who move outside urban areas. In order to achieve the goal of developing a new car in the industrial automotive environment, the compact SUV segment was chosen because it is a vehicle very requested by the costumers and it is successful in the market due to its versatility. IDeS is a combination of innovative and advanced systematic approaches used to set up a new industrial project. The IDeS methodology is sequentially composed of Quality Function Deployment (QFD), Benchmarking (BM), Top-Flop analysis (TFA), Stylistic Design Engineering (SDE), Design for X, Prototyping, Testing, Budgeting, and Planning. The work is based on a series of steps and the sequence of these must be meticulously scheduled, imposing deadlines along the work. Starting from an analysis of the market and competitors, the study of the best and worst existing parameters in the competitor’s market is done, arriving at the idea of a better product in terms of numbers and innovation. After identifying the characteristics that the new car should have, the other step is the styling part, with the definition of the style and the design of the machine on a 3D CAD. Finally, it switches to the prototyping and testing phase to see if the product is able to work. Ultimately, intending to place the car on the market, it is essential to estimate the necessary budget for a possible investment in this project.
Resumo:
The aim of this study, conducted in collaboration with Lawrence Technological University in Detroit, is to create, through the method of the Industrial Design Structure (IDeS), a new concept for a sport-coupe car, based on a restyling of a retro model (Ford Mustang 1967). To date, vintage models of cars always arouse great interest both for the history behind them and for the classic and elegant style. Designing a model of a vehicle that can combine the charm of retro style with the innovation and comfort of modern cars would allow to meet the needs and desires of a large segment of the market that today is forced to choose between past and future. Thanks to a well-conceived concept car an automaker company is able to express its future policy, to make a statement of intent as, such a prototype, ticks all the boxes, from glamour and visual wow-factor to technical intrigue and design fascination. IDeS is an approach that makes use of many engineering tools to realize a study developed on several steps that must be meticulously organized and timed. With a deep analysis of the trends dominating the automotive industry it is possible to identify a series of product requirements using quality function deployment (QFD). The considerations from this first evaluation led to the definition of the technical specifications via benchmarking (BM) and top-flop analysis (TFA). Then, the structured methodology of stylistic design engineering (SDE) is applied through six phases: (1) stylistic trends analysis; (2) sketches; (3) 2D CAD drawings; (4) 3D CAD models; (5) virtual prototyping; (6) solid stylistic model. Finally, Developing the IDeS method up to the final stages of Prototypes and Testing you get a product as close as possible to the ideal vehicle conceptualized in the initial analysis.