954 resultados para FINE STRUCTURE
Resumo:
Für die Entwicklung photoschaltbarer selbstorganisierter Monoschichten (SAMs) auf Gold(111)-Oberflächen wurden neue Azobenzol-terminierte Asparagussäure - und Liponsäurederivate synthetisiert. Um den Einfluss lateraler Wasserstoffbrückenbindungen auf Qualität und Orientierungsordnung der Schichten zu untersuchen, wurden Monolagen, die durch amid- und esterverknüpfte Verbindungen gebildet wurden, miteinander verglichen. Die Filmbildung aus der Lösung wurde in situ durch optische Frequenzverdopplung (SHG) untersucht und die Photoreaktivität mittels Kontaktwinkelmessungen, Oberflächen-Plasmonenresonanz (SPR) und Ellipsometrie verfolgt. SAMs auf Gold wurden außerdem mit Hilfe von Röntgenphotoelektronenspektroskopie (XPS), Nahkanten-Reflexions-Röntgenabsorptionsspektroskopie (NEXAFS) und Infrarot-Reflexionsabsorptionsspektroskopie (IRRAS) charakterisiert, um die Filmqualität, die Bindung ans Substrat und Orientierungsordnung im Film zu ermitteln. Da die Chemisorption auf polykristallinem Gold formal der Koordinationschemie von 1,2-Dithiolan-Derivaten gegenüber nullwertigen Edelmetall-Zentralatomen entspricht, wurden etliche Pt-Komplexe durch oxidative Addition an [Pt(PPh3)4] dargestellt. Im Zusammenhang mit der Darstellung der Asparagussäure wurde die Kristallstruktur von [pipH]2[WS4] und der neuen Verbindungen [pipH]3[WS4](HS) und [pipH]4[WS4][WOS3] (pip = Piperidin) bestimmt. Wasserstoffbrückenbindungen zwischen den Piperidinium-Kationen und den Thiowolframat-Anionen spielen eine dominante strukturelle Rolle.
Resumo:
Self-assembled monolayers (SAMs) on solid surfaces are of great current interest in science and nanotechnology. This thesis describes the preparation of several symmetrically 1,1’-substituted ferrocene derivatives that contain anchoring groups suitable for chemisorption on gold and may give rise to SAMs with electrochemically switchable properties. The binding groups are isocyano (-NC), isothiocyanato (-NCS), phosphanyl (-PPh2), thioether (-SR) and thienyl. In the context of SAM fabrication, isothiocyanates and phosphanes are adsorbate systems which, surprisingly, have remained essentially unexplored. SAMs on gold have been fabricated with the adsorbates from solution and investigated primarily by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The results of these analytical investigations are presented and discussed in matters of the film quality and possible binding modes. The quality of self-assembled monolayers fabricated from 1,1’-diisocyanoferrocene and 1,1’-diisothiocyanatoferrocene turned out to be superior to that of films based on the other adsorbate species investigated. Films of those absorbates as well as of dppf afforded well-defined SAMs of good quality. All other films of this study based on sulfur containing anchoring groups exhibit chemical inhomogeneity and low orientational order of the film constituents and therefore failed to give rise to well-defined SAMs. Surface coordination chemistry is naturally related to molecular coordination chemistry. Since all SAMs described in this thesis were prepared on gold (111) surfaces, the ferrocene-based ligands of this study have been investigated in their ability for complexation towards gold(I). The sulfur-based ferrocene ligands [fc(SR)2] failed to give stable gold(I) complexes. In contrast, 1,1’-diisocyanoferrocene (1) proved to be an excellent ligand for the complexation of gold(I). Several complexes were prepared and characterised utilising a series of gold(I) acetylides. These complexes show interesting structural motifs in the solid state, since intramolecular aurophilic interactions lead to a parallel orientation of the isocyano moieties, combined with an antiparallel alignment of neighbouring units. The reaction of 1 with the gold(I) acetylide [Au(C≡C–Fc)]n turned out to be very unusual, since the two chemically equivalent isocyano groups undergo a different reaction. One group shows an ordinary coordination and the other one undergoes an extraordinary 1,1-insertion into the Au-C bond. As a sideline of the research of this thesis several ferrocene derivatives have been tested for their suitability for potential surface reactions. Copper(I) mediated 1,3-dipolar cycloadditions of azidoferrocene derivatives with terminal alkynes appeared very promising in this context, but failed to a certain extent in terms of ‘click’ chemistry, since the formation of the triazoles depended on the strict exclusion of oxygen and moisture and yields were only moderate. Staudinger reactions between dppf and azidoferrocene derivatives were also tested. The nucleophilic additions of secondary amines to 1,1’-diisothiocyanatoferrocene led to the respective thiourea derivatives in quantitative yields.
Resumo:
Für die Entwicklung selbstorganisierter Monoschichten (SAMs) auf Gold(111)-Oberflächen wurden neue, redox-funktionalisierte Schwefel-Tripodliganden synthetisiert. Um die tripodale Struktur zu realisieren, wurde Adamantan als vierbindiges Zentrum eingesetzt. Die Anbindung an die Goldoberfläche wurde durch Thioethereinheiten ermöglicht, eventuelle laterale Wechselwirkungen durch Alkylseitenketten an den Thioethereinheiten, sowie durch lineare, rigide Spacereinheiten wurden untersucht. Als redoxaktive, funktionelle Einheit wurde ein Ferrocenylrest an den Liganden eingeführt. Gebildete monomolekulare Filme der Liganden auf Gold wurden mit Hilfe von Röntgenphotoelektronenspektroskopie (XPS), Nahkanten-Reflexions-Röntgenabsorptionsspektroskopie (NEXAFS) und Sum-Frequency-Generation (SFG) charakterisiert, um die Filmqualität, die Bindung ans Substrat und Orientierungsordnung im Film zu ermitteln.
Resumo:
Im Vordergrund dieser Arbeit stehen die Synthesen des Azobenzol-4-trichlorsilans sowie des Bis(4-azobenzol)disulfids, ausgehend von einfachen und kommerziell erhältlichen Verbindungen. Moleküle, aus denen sich diese Verbindungen synthetisieren lassen, sind die Iodderivate des Azobenzols, welche über die Kondensation von Benzolaminen (Anilinen) und Nitrosobenzolen dargestellt wurden, aber auch über die altbewährte Azokupplung. Insgesamt wurden 19 neue Azobenzolderivate, das neue [(4-Aminophenyl)ethinyl]ferrocen und das neue Bis[4-(4'-bromazobenzol)]disulfid synthetisiert und charakterisiert. Außerdem wurden 13 neue Kristallstrukturen erzeugt. Mit den synthetisierten Molekülen wurden Substrat-Adsorbat-Systeme gebildet. Als Substrate wurden oberflächenoxidiertes Silizium und Gold gewählt. Die Präparation dieser sogennanten selbstorganisierten Monolagen (SAMs) bzw. der kovalent gebundenen Monolagen im Falle der Trichlorsilylderivate (CAMs) wurde eingehend studiert. Das Azobenzol wurde als photoschaltbare Einheit gewählt, da es bereits Kern zahlreicher Untersuchungen war und als solcher als guter und zuverlässiger Baustein für reversible photoschaltbare Systeme etabliert ist. Zur Charakterisierung Schichten und zur Untersuchung ihres photoresponsiven Verhaltens sowie sowie zur Untersuchung der Schichtbildung selbst wurden mehrere physikalische Messmethoden angewandt. Die Schichtbildung wurde mit SHG (optische Frequenzverdopplung) verfolgt, die fertigen Schichten wurden mit XPS (Röntgen-Photonen-Spektroskopie) und NEXAFS (Nahkanten-Röntgen-Absorptions-Feinstruktur) untersucht, um Orientierung und Ordnung der Moleküle in der Schicht zu ermitteln. Das Schaltverhalten wurde mit Ellipsometrie und durch Messungen des Wasserkontaktwinkels beobachtet. Durch Variation der Endgruppe des Azobenzols ist es möglich, die Oberflächeneigenschaften einstellen gezielt zu können, wie Hydrophobie, Hydrophilie, Komplexierungsverhalten oder elektrische Schaltbarkeit. Dies gelingt durch Gruppen wie N,N-Dimethylamino-, Methoxy-, Ethoxy-, Octyloxy-, Dodecyloxy-, Benzyloxy-, Methyl-, Trifluormethyl-, Pyridyl-, Phenylethinyl- und Ferrocenyl-Restgruppen, um nur eine Auswahl zu nennen. Einerseits wurde Silizium als Substrat gewählt, da es wegen seiner Verwendung in der Halbleiterindustrie ein nicht uninteressantes Substrat darstell und die Möglichkeiten der kovalenten Anbindung von Trichlorsilanen aber auch Trialkoxysilanen auch gut untersucht ist. Andererseits wurden auch Untersuchungen mit Gold als Substrat angestellt, bei dem Thiole und Disulfide die bevorzugten Ankergruppen bilden. Während sich auf Gold sogenannte SAMs bilden, verleiht die kovalente Siloxanbindung den CAMs auf Silizium eine besondere Stabilität.
Resumo:
We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.
Resumo:
When considering contaminated site ecology and ecological risk assessment a key question is whether organisms that appear unaffected by accumulation of contaminants are tolerant or resistant to those contaminants. A population of Dendrodrilus rubidus Savigny earthworms from the Coniston Copper Mines, an area of former Cu mining, exhibit increased tolerance and accumulation of Cu relative to a nearby non-Cu exposed population. Distribution of total Cu between different body parts (posterior, anterior, body wall) of the two populations was determined after a 14 day exposure to 250 mg Cu kg(-1) in Cu-amended soil. Cu concentrations were greater in Coniston earthworms but relative proportions of Cu in different body parts were the same between populations. Cu speciation was determined using extended X-ray absorption fine structure spectroscopy (EXAFS). Cu was coordinated to 0 atoms in the exposure soil but to S atoms in the earthworms. There was no difference in this speciation between the different earthworm populations. In another experiment earthworms were exposed to a range of Cu concentrations (200-700 mg Cu kg(-1)). Subcellular partitioning of accumulated Cu was determined. Coniston earthworms accumulated more Cu but relative proportions of Cu in the different fractions (cytosol > granular > tissue fragments, cell membranes, and intact cells) were the same between populations. Results suggest that Coniston D. rubidus are able to survive in the Cu-rich Coniston Copper Mines soil through enlargement of the same Cu storage reservoirs that exist in a nearby non-Cu exposed population.
Resumo:
The development of protocols for the identification of metal phosphates in phosphate-treated, metal-contaminated soils is a necessary yet problematical step in the validation of remediation schemes involving immobilization of metals as phosphate phases. The potential for Raman spectroscopy to be applied to the identification of these phosphates in soils has yet to be fully explored. With this in mind, a range of synthetic mixed-metal hydroxylapatites has been characterized and added to soils at known concentrations for analysis using both bulk X-ray powder diffraction (XRD) and Raman spectroscopy. Mixed-metal hydroxylapatites in the binary series Ca-Cd, Ca-Pb, Ca-Sr and Cd-Pb synthesized in the presence of acetate and carbonate ions, were characterized using a range of analytical techniques including XRD, analytical scanning electron microscopy (SEM), infrared spectroscopy (IR), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and Raman spectroscopy. Only the Ca-Cd series displays complete solid solution, although under the synthesis conditions of this study the Cd-5(PO4)(3)OH end member could not be synthesized as a pure phase. Within the Ca-Cd series the cell parameters, IR active modes and Raman active bands vary linearly as a function of Cd content. X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) suggest that the Cd is distributed across both the Ca(1) and Ca(2) sites, even at low Cd concentrations. In order to explore the likely detection limits for mixed-metal phosphates in soils for XRD and Raman spectroscopy, soils doped with mixed-metal hydroxylapatites at concentrations of 5, 1 and 0.5 wt.% were then studied. X-ray diffraction could not confirm unambiguously the presence or identity of mixed-metal phosphates in soils at concentrations below 5 wt.%. Raman spectroscopy proved a far more sensitive method for the identification of mixed-metal hydroxylapatites in soils, which could positively identify the presence of such phases in soils at all the dopant concentrations used in this study. Moreover, Raman spectroscopy could also provide an accurate assessment of the degree of chemical substitution in the hydroxylapatites even when present in soils at concentrations as low as 0.1%.
Resumo:
The vibrational spectrum of dimethyl acetylene has been remeasured with better resolving power than hitherto, and the rotational fine structure of some perpendicular type bands has been partly analyzed. The energy levels of a molecule of this kind in which internal rotation of methyl groups may arise have been re-examined theoretically and the rotational structure of the absorption bands has been more clearly defined than previously. The experimental results are consistent with the assumption of unrestricted internal rotation of the methyl groups, and the Coriolis factors $\zeta _{i}$ for several vibrations have been determined.
Resumo:
Temperature-programmed reaction measurements supported by scanning tunneling microscopy have shown that phenylacetylene and iodobenzene react on smooth Au(111) under vacuum conditions to yield biphenyl and diphenyldiacetylene, the result of homocoupling of the reactant molecules. They also produce diphenylacetylene, the result of Sonogashira cross-coupling, prototypical of a class of reactions that are of paramount importance in synthetic organic chemistry and whose mechanism remains controversial. Roughened Au(111) is completely inert toward all three reactions, indicating that the availability of crystallographically well-defined adsorption sites is crucially important. High-resolution X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy show that the reactants are initially present as intact, essentially flat-lying molecules and that the temperature threshold for Sonogashira coupling coincides with that for C−I bond scission in the iodobenzene reactant. The fractional-order kinetics and low temperature associated with desorption of the Sonogashira product suggest that the reaction occurs at the boundaries of islands of adsorbed reactants and that its appearance in the gas phase is rate-limited by the surface reaction. These findings demonstrate unambiguously and for the first time that this heterogeneous cross-coupling chemistry is an intrinsic property of extended, metallic pure gold surfaces: no other species, including solvent molecules, basic or charged (ionic) species are necessary to mediate the process.
Resumo:
The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 μm) or cadmium (25 μm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.
Resumo:
The molecular structures of NbOBr3, NbSCl3, and NbSBr3 have been determined by gas-phase electron diffraction (GED) at nozzle-tip temperatures of 250 degreesC, taking into account the possible presence of NbOCl3 as a contaminant in the NbSCl3 sample and NbOBr3 in the NbSBr3 sample. The experimental data are consistent with trigonal-pyramidal molecules having C-3v symmetry. Infrared spectra of molecules trapped in argon or nitrogen matrices were recorded and exhibit the characteristic fundamental stretching modes for C-3v species. Well resolved isotopic fine structure (Cl-35 and Cl-37) was observed for NbSCl3, and for NbOCl3 which occurred as an impurity in the NbSCl3 spectra. Quantum mechanical calculations of the structures and vibrational frequencies of the four YNbX3 molecules (Y = O, S; X = Cl, Br) were carried out at several levels of theory, most importantly B3LYP DFT with either the Stuttgart RSC ECP or Hay-Wadt (n + 1) ECP VDZ basis set for Nb and the 6-311 G* basis set for the nonmetal atoms. Theoretical values for the bond lengths are 0.01-0.04 Angstrom longer than the experimental ones of type r(a), in accord with general experience, but the bond angles with theoretical minus experimental differences of only 1.0-1.5degrees are notably accurate. Symmetrized force fields were also calculated. The experimental bond lengths (r(g)/Angstrom) and angles (angle(alpha)/deg) with estimated 2sigma uncertainties from GED are as follows. NbOBr3: r(Nb=O) = 1.694(7), r(Nb-Br) = 2.429(2), angle(O=Nb-Br) = 107.3(5), angle(Br-Nb-Br) = 111.5(5). NbSBr3: r(Nb=S) = 2.134(10), r(Nb-Br) = 2.408(4), angle(S=Nb-Br) = 106.6(7), angle(Br-Nb-Br) = 112.2(6). NbSCl3: Nb=S) = 2.120(10), r(Nb-Cl) = 2.271(6), angle(S=Nb-Cl) = 107.8(12), angle(Cl-Nb-Cl) = 111.1(11).
Resumo:
The adsorption of L-CySteine and L-methionine amino acids on a chiral Cu{5 3 1} surface was investigated with high resolution X-ray photoelectron spectroscopy (XPS) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) Spectroscopy using synchrotron radiation. XPS shows that at 300 K L-cysteine adsorbs through two oxygen, a nitrogen and a sulfur atom, in a four point 'quadrangular footprint', whereas L-methionine adsorbs through only two oxygen and a nitrogen atom in a 'triangular footprint'. NEWS was used to clarify the adsorption geometry of both molecules, which suggests a binding orientation to the top layer and second layer atoms in two different orientations associated with adsorption sites on {1 1 0} and {3 1 1} microfacets; of the Cu{5 3 1} surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic−inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of l- and d-enantiomers aggregate into superstructures with chiral (−1 2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β−OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.
Resumo:
We have studied enantiospecific differences in the adsorption of (S)- and (R)-alanine on Cu{531}R using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. At saturation coverage, alanine adsorbs as alaninate forming a p(1 4) superstructure. LEED shows a significantly higher degree of long-range order for the S than for the R enantiomer. Also carbon K-edge NEXAFS spectra show differences between (S)- and (R)-alanine in the variations of the ð resonance when the linear polarization vector is rotated within the surface plane. This indicates differences in the local adsorption geometries of the molecules, most likely caused by the interaction between the methyl group and the metal surface and/or intermolecular hydrogen bonds. Comparison with model calculations and additional information from LEED and photoelectron spectroscopy suggest that both enantiomers of alaninate adsorb in two different orientations associated with triangular adsorption sites on {110} and {311} microfacets of the Cu{531} surface. The experimental data are ambiguous as to the exact difference between the local geometries of the two enantiomers. In one of two models that fit the data equally well, significantly more (R)-alaninate molecules are adsorbed on {110} sites than on {311} sites whereas for (S)-alaninate the numbers are equal. The enantiospecific differences found in these experiments are much more pronounced than those reported from other ultrahigh vacuum techniques applied to similar systems.
Resumo:
Chemisorbed layers of lysine adsorbed on Cu{110} have been studied using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS indicates that the majority (70%) of the molecules in the saturated layer at room temperature (coverage 0.27 ML) are in their zwitterionic state with no preferential molecular orientation. After annealing to 420 K a less densely packed layer is formed (0.14 ML), which shows a strong angular dependence in the characteristic π-resonance of oxygen K edge NEXAFS and no indication of zwitterions in XPS. These experimental results are best compatible with molecules bound to the substrate through the oxygen atoms of the (deprotonated) carboxylate group and the two amino groups involving Cu atoms in three different close packed rows. This μ4 bonding arrangement with an additional bond through the !-amino group is different from geometries previously suggested for lysine on Cu{110}.