953 resultados para Extrathoracic Airway
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.
Resumo:
Recurrent airway obstruction (RAO) is a multifactorial and polygenic disease. Affected horses are typically 7 years of age or older and show exercise intolerance, increased breathing effort, coughing, airway neutrophilia, mucus accumulation and hyperreactivity as well as cholinergic bronchospasm. The environmental factors responsible are predominantly allergens and irritants in haydust, but the immunological mechanisms underlying RAO are still unclear. Several studies have demonstrated a familiar predisposition for RAO and it is now proven that the disease has a genetic basis. In offspring, the risk of developing RAO is 3-fold increased when one parent is affected and increases to almost 5-fold when both parents have RAO. Segregation analysis in two high-prevalence families demonstrated a high heritability and a complex inheritance with several major genes. A whole genomescan showed chromosome-wide significant linkage of seven chromosomal regions with RAO. Of the microsatellites, which were located near atopy candidate genes, those in a region of chromosome 13 harboring the IL4R gene were strongly associated with the RAO phenotype in the offspring of one RAO-affected stallion. Furthermore, IgE-levels are influenced by hereditary factors in the horse, and we have evidence that RAO-affected offspring of the same stallion have increased levels of specific IgE against moldspore allergens. The identification of genetic markers and ultimately of the responsible genes will not only allow for an improved prophylaxis, i.e. early identification of susceptible individuals and avoidance of high-risk matings, but also improve our ability to find new therapeutic targets and to optimize existing treatments.
Resumo:
The purpose of this manuscript is to revise and update the previous consensus statement on inflammatory airway disease (IAD) in horses. Since 2007, a large number of scientific articles have been published on the topic and these new findings have led to a significant evolution of our understanding of IAD.
Resumo:
Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.
Resumo:
Human β-defensins (HBDs) are antimicrobial peptides that may play a role in mucosal defense. Diminished activity of these peptides has been implicated in the pathogenesis of cystic fibrosis (CF) lung disease. We show that HBD-1 and HBD-2 mRNAs are expressed in excised surface and submucosal gland epithelia from non-CF and CF patients. The pro-inflammatory cytokine interleukin-1β stimulated the expression of HBD-2 but not HBD-1 mRNA and peptide in primary cultures of airway epithelia. HBD-1 was found in bronchoalveolar lavage (BAL) fluid from normal volunteers, CF patients, and patients with inflammatory lung diseases, whereas HBD-2 was detected in BAL fluid from patients with CF or inflammatory lung diseases, but not in normal volunteers. Both HBD-1 and HBD-2 were found in BAL fluid in concentrations of several ng/ml, and both recombinant peptides showed salt-sensitive bactericidal activity. These data suggest that in the lung HBD-2 expression is induced by inflammation, whereas HBD-1 may serve as a defense in the absence of inflammation.
Resumo:
When using the laryngeal tube and the intubating laryngeal mask airway (ILMA), the medium-size (maximum volume 1100 ml) versus adult (maximum volume 1500 ml) self-inflating bags resulted in significantly lower lung tidal volumes. No gastric inflation occurred when using both devices with either ventilation bag. The newly developed medium-size self-inflating bag may be an option to further reduce the risk of gastric inflation while maintaining sufficient lung ventilation. Both the ILMA and laryngeal tube proved to be valid alternatives for emergency airway management in the experimental model used.
Resumo:
A wealth of evidence supports increased NO (NO⋅) in asthma, but its roles are unknown. To investigate how NO participates in inflammatory airway events in asthma, we measured NO⋅ and NO⋅ chemical reaction products [nitrite, nitrate, S-nitrosothiols (SNO), and nitrotyrosine] before, immediately and 48 h after bronchoscopic antigen (Ag) challenge of the peripheral airways in atopic asthmatic individuals and nonatopic healthy controls. Strikingly, NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} was the only NO⋅ derivative to increase during the immediate Ag-induced asthmatic response and continued to increase over 2-fold at 48 h after Ag challenge in contrast to controls [P < 0.05]. NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} was not affected by Ag challenge at 10 min or 48 h after Ag challenge. Although SNO was not detectable in asthmatic airways at baseline or immediately after Ag, SNO increased during the late response to levels found in healthy controls. A model of NO⋅ dynamics derived from the current findings predicts that NO⋅ may have harmful effects through formation of peroxynitrite, but also subserves an antioxidant role by consuming reactive oxygen species during the immediate asthmatic response, whereas nitrosylation during the late asthmatic response generates SNO, safe reservoirs for removal of toxic NO⋅ derivatives.
Resumo:
Airway hyperresponsiveness (AHR), goblet cell metaplasia, and mucus overproduction are important features of bronchial asthma. To elucidate the molecular mechanisms behind these pulmonary pathologies, we examined for genes preferentially expressed in the lungs of a murine model of allergic asthma by using suppression subtractive hybridization (SSH). We identified a gene called gob-5 that had a selective expression pattern in the airway epithelium with AHR. Here, we show that gob-5, a member of the calcium-activated chloride channel family, is a key molecule in the induction of murine asthma. Intratracheal administration of adenovirus-expressing antisense gob-5 RNA into AHR-model mice efficiently suppressed the asthma phenotype, including AHR and mucus overproduction. In contrast, overexpression of gob-5 in airway epithelia by using an adenoviral vector exacerbated the asthma phenotype. Introduction of either gob-5 or hCLCA1, the human counterpart of gob-5, into the human mucoepidermoid cell line NCI-H292 induced mucus production as well as MUC5AC expression. Our results indicated that gob-5 may play a critical role in murine asthma, and its human counterpart hCLCA1 is therefore a potential target for asthma therapy.
Resumo:
To investigate the contribution of interleukin-4 (IL-4) to airway inflammation in vivo and to explore directly its relationship to airway reactivity, we created transgenic mice in which the murine cDNA for IL-4 was regulated by the rat Clara cell 10 protein promoter. Expression was detected only in the lung and not in thymus, heart, liver, spleen, kidney, or uterus. The expression of IL-4 elicited hypertrophy of epithelial cells of the trachea, bronchi, and bronchioles. Hypertrophy is due, at least in part, to the accumulation of mucus glycoprotein. Histologic examination of parenchyma revealed multinucleated macrophages and occasional islands of cells consisting largely of eosinophils or lymphocytes. Analysis of lung lavage fluid revealed the presence of a leukocytic infiltrate consisting of lymphocytes, neutrophils and eosinophils. Mice expressing IL-4 had greater baseline airway resistance but did not demonstrate hyperreactivity to methacholine. Thus, the expression of IL-4 selectively within the lung elicits an inflammatory response characterized by epithelial cell hypertrophy, and the accumulation of macrophages, lymphocytes, eosinophils, and neutrophils without resulting in an alteration in airway reactivity to inhaled methacholine.
Resumo:
Nitric oxide (NO) is an important mediator of inflammatory responses in the lung and a key regulator of bronchomotor tone. An airway NO synthase (NOS; EC 1.14.13.39) has been proposed as a source of endogenous NO in the lung but has not been clearly defined. Through molecular cloning, we conclusively demonstrate that NO synthesis in normal human airways is due to the continuous expression of the inducible NOS (iNOS) isoform in airway epithelial cells. Although iNOS mRNA expression is abundant in airway epithelial cells, expression is not detected in other pulmonary cell types, indicating that airway epithelial cells are unique in the continuous pattern of iNOS expression in the lung. In situ analysis reveals all airway epithelial cell types express iNOS. However, removal of epithelial cells from the in vivo airway environment leads to rapid loss of iNOS expression, which suggests expression is dependent upon conditions and/or factors present in the airway. Quantitation of NOS activity in epithelial cell lysates indicates nanomolar levels of NO synthesis occur in vivo. Remarkably, the high-level iNOS expression is constant in airway epithelium of normal individuals over time. However, expression is strikingly decreased by inhaled corticosteroids and beta-adrenergic agonists, medications commonly used in treatment of inflammatory airway diseases. Based upon these findings, we propose that respiratory epithelial cells are key inflammatory cells in the airway, functioning in host defense and potentially playing a role in airway inflammation.